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ABSTRACT
H :
This thesis presents the theoretical and computational
underpinninas of a novel approach to,the determination of>the
acoustic parameters of the ocean bottom using a monochromatic
source. The problem is shown to be equivalent to that of the
reconstruction of the potential in a Schrbdlnqer eguation
from the knowledge of the plane-wave reflection coefficient
as a function of vertical wavenumber, {(k ),for all real B
positive k First, the reflection coefficient is shown t& . @ -
decay asvmototlcally at least as fast as (l/kz2 for larqe k,
and is therefore integrable. The Gelfan&\Lev1tan inversion
procedure is extended to include the case of basement
velocity higher than the velocity of sound in water. The
peglect of bound states is shown to be justified in both
clayey silt and silty clay at the 220 Hz frequencv of
operation.

Three methods for thé numerical solution, of: the 1nteqral
equation are investigated. The first one is an "Improved
Born approxlmatlon“ wherein the solution is given as a series
expansion the flrst term of which is the Born approximation
while the second, term represents a substantial and yet easy
to implement improvement over Born.

The +two other methods are based on ‘a discretization of
the Gelfand-Levitan 1nteqra1 equation, and both avoid a
matrix inversion: one by’ employlnq a recursive procedure,
and the other by coupling the Gelfand-Levitan equation with a
partial differential equation. Bounds are obtained on errors
in the solution due either to discretization or to data inac-
curacy. These methods are tested on synthetic data obtained
from known geoacoustic models of the ocean bottom. Results
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are found to be very accurate particularly at the top of the
sediment layer with resolution of less than the wavelength of
the acoustic source in the water. Several effects are inves-
tigated, such as sampling, attenuation, and noise. Also
examined is the qgradual restriction of the reflection coeffi-
cient to a finite range of vertical wavenumbers and the con-
sequent proqressive deterioration of the reconstruction.

The analysis shows how to reconstruct velocity profiles
in the presence of density variation when the experiment is
conducted at two frequencies.

Our results provide a good understanding of the issues
involved in conducting a monochromatic deep ocean bottom
experiment and constitute a promising technique for process-
ina the experimental data when it becomes available.
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CHAPTER 1

BACKGROUND

It is a rare person whose pulse is
not stirred by the dramatic sight of
the restless surface of the sea.

The chaotic sea surface is a
limitless source of inspiration to
poet, painter and musician alike.
But what lies beneath this churning
surface? How can we probe the
denths of the sea?

C. Clay & H. Medwin

1.1 Background

The sea floor begins at the water-sediment interface,
overlies the sedimentary layer, and beneath it, the oceanic
crust. The study of the ocean bottom has been, until
recently, the province of the marine aqeologist seeking to
probe the oceanic crust, and to unravel the secrets of its
structure and evolution. The marine geologist has now been
joined by the underwater acoustician studying the transmis-
sion of low freaduency sound through the ocean; It has become
clear in light of underwater sound propagation experiments
carried out at the various Oceanographic Instituticns(l) that
lona range low frequency sound transmission is affected by
the nature of the ocean bottom, and hence, that acoustic wave
propagation models - to characterize sonar performance, for

instance - should include a detailed representation of the




hottom, the qgeocacoustic model. 1In practice, one posits a
"reasonable" ocean bottom model, and then one proceeds to
sc.ve the propagation problem at hand, (the "Direct"
nroblem). Here, the onnosite perspective is adonted: Since
the ocean hottom affects acoustic wave propagation, would it
not be possible to learn something about the hottom from that

interaction? (The "Inverse" problem.)

The answer to this guestion is beina sought in the
context of an original, single fregquency, deep ocean bottom
interaction experiment designed by G. Frisk and his
colleaques of the Woods Hole Oceanoqraphic Institution, and
performed in the Hatteras Abyssal Plain(2)+(3) and at other
locations(4), The monochromatic character of the Frisk
method sets it apart from currently used techniques using
explosive {(or impulse-like) wide-band sources. The Frisk

experiment started off as a heuristic apnroach.

This thesis presents the theoretical basis and numerical
analysis of the monochromatic experiment based on an exten-
sion of the Gelfand-Levitan theory of quantum scattering. We
succeeded in applying a numerical solution to the exact
inverse method which distinguishes this solution method from

the currently used approximate or trial and error inverse

methods.




1.2 The Experiment

The geometry of the experiment is hest explained with
reference to Fig. 1. 1In brief, a drifting vessel tows a
220 Hz pulsed CW source. Hydrophones moored close to the
bottom record the resultina pressure, bcth amplitude and

phase (via coherent quadrature demodulation), as the ship

onens range.

The pulsing of the 220 Hz source, turning it on for
4 sec every 14 sec, allows for steady state conditions to be
attained before any reflections from the ocean surface can
reach the receivers. Note that a 14 second duty cycle
siagnifies that the acoustic field is sampled spatially once

every half wavelenath.

The source aperture is small enough compared to the
wavelength (7 m) to be considered an omnidirectional point
s~urce. The recorded cnmplex npressure is therefore the field
due to the reflections of a spherical wave off the bottom.
The information is translated via a Hankel transform, into
the plane wave reflection coefficient at a sinale frequency
(220 Hz) for all angles of incidence, both real and
comnlex(5), The critical point to observe is that for a
monochromatic plane wave incident on a flat layered bottom,
the reflection coefficient is a function of the angle of
incidence. At a qgiven anqgle of incidence, the magnitude and

phase of the reflection coefficient depend on the acoustic
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properties of the hottom sediments. That naturally leads to
the ocean hottom inverse probhlem: Can the sediment acoustic
parameters, velocity and density, be reconstructed from the

plane wave reflection data at a single frequency for all

anqles of incidence? The thesis aims to elucidate that

aquestions.

1.3 Experimental Data

The relationship between the experimental data and the
plane wave reflection coefficient has been studied numerical-
ly by Frisk et a1(3) and Mook(G). Before beginning our
analysis, it is useful here to take a quick look at the
underlying theory relating the reflections of spherical waves
from a point source, as in the Frisk experiment, to the plane
wave reflection as in our model.

The measurements yield the pressure field due to a point
source above the bottom half space. Because of the cylindri-
cal symmetry of the problem, the reflected pressure field can

be written as a superposition of plane waves

w ivk 2-k 2(z+z

_ 0 r 0)
Polr,2z) = g Jo(krr)krdkr

(1.1)

where k, is the horizontal wavenumber, and r(k,) is the

corresponding reflection coefficient.

-11-




This Sommerfeld integral is a Hankel transform which can

be inverted to obtain the reflection coefficient

——— -

—F -i/koz-kr2|2+zo' L]
r(k,) = -irky"-k “ e £ Pp(r)Jy(k r)dr

(1.2)

Note that r(kr) is a function of horizontal wavenumber while
the required input to the inverse procedure is the reflection
coefficient as a function of the vertical wavenumber r(k,).

The two are of course related by the dispersion relation
k.2 = k.2 - k_ 2 (1.3)

Given r(kr) for real k., one can readily generate r(k,) for

0 < k, < ko. It is more difficult to obtain r(kz) for the

z
full range 0 < k, < = since kg < k, < » correspond to T (k.)
for imaginary k.. One approach has been suggested by
stickler(7) and involves the use of a theorem by Van Winter
to generate r(k,) on a ray in the complex plane given its
value on the real axis segment 0 < k, < kg. The effect of

limiting r(k,) to real angles (0 < k, < kg) on the inversion

for the unknown potential V(z) will be discussed in

Chapter VI.

-12-




1.4 The Model

A number of assumptions are implicit in the "exact”

inverse procedure detailed in the following chapters.

(a) The ocean is assumed homogeneous, and acoustically
transparent. In particular, the depth variation of the
velocity of sound propagation is neglected. That is a
reasonable assumption at the great depth (5 km) in which the

experiment is conducted.

(b) The ocean bottom is assumed to have no horizontal
structure, the velocity variation is therefore solely a
function of depth. That is a severe restriction imposed by
all "exact" inversion formalisms developed to date.
Surprisingly, horizontal stratification describes adequately
vast areas of the deep ocean floor known as Abyssal plains:
These are widespread in the Atlantic and Indian Oceans and in

the marginal seas.

The early deep ocean bottom interaction experiments were
conducted in the Hatteras Abyssal Plain. This nearly level
plain lies at the base of the East Coast Continental rise,
and is 1000 km long by 150-300 km wide. 1Its thick (> 1 km)
sediments were formed by the smooth accumulation of
turbidites over the rough basement resulting in one of the

flattest areas on earth with slopes of less than 1 m/km.

-13-




{(c) The ocean bottom has been traditionally treated as
a fluid in problems involvina bottom reflection. In the deep
ocean bhottom interaction experiments, the acoustic source
generates compressional (P) waves in the water, which upon
propagation in the hottom, a vertically heterogeneous medium,
may be converted to shear (SV) waves. The conversion to
shear waves will occur discretely at layer interfaces and
continuously, where velocity agradients occur. Fryer had
shown in one of his papers(s) that coupling for continuously
varying elastic narameters is neqliqgible at frequencies above
20 Hz. Vidmar and Foreman(9) estimated that gradient-induced
coupling should be expected in marine sediment at frequencies
up to 3 Hz. Another paper by Fryer(lo) established that this
coupling is extremely small above 1 Hz, reqardless of
sediment thickness. The most important effect of coupling
appears to be the conversion of shear to compressional motion
at the sediment basement interface. Note, that although
these results are based on a continuously varying structure
. (approximated by homogeneous layers), they do provide for the
sharp discontinuity in elastic parameters at the sediment
basement interface. These results do justify the neglect of
shear wave effects at the 220 Hz frequency selected for the
experiments that have already been conducted, and at the
lower frequencies envisaged by the Frisk group for future

experiments.

-14~




1.5 Overview of the Thesis

In Chapter 1I, we begin with a mathematical statement of
the inverse problem and represent it as a scattering problem
for the Schrodinger equation. We conclude the chapter with a

review of the relevant literature.

The input to the inverse procedure, the plane-wave re-
flection coefficient, and particularly its asymptotic
behavior for large vertical wavenumbers are the subject of

Chapter III.

Chapter IV presents an extension of the Gelfand-Levitan
inversion method to the case of non-~-zero terminal potential.
It is this'formulation that permits us an exact solution of
the inverse problem so that what remains is the numerical
solution of the inteqral equation characterizing the
solution.

The derivation presented in Chapter IV is followed in
Chapter V by a discussion of three numerical methods to solve
. the Gelfand-Levitan inteqral equation: An improved Born

approximation and two finite-difference methods.

The numerical methods outlined in Chapter V were tested
on various postulated acoustic profiles using synthetically
generated reflection coefficients. The representative numer-
ical results, the impact of sampling, finite angle aperture,

density, loss and noise are discussed in Chapter VI.

Chapter VII comprises the conclusion and suggestions for

future work.

-15-




CHAPTER II

PROBLFM FORMULATION AND REVIEW OF PAST WORK

The determination of the acoustic properties of the
ocean bottom from the monochromatic plane wave reflection
coefficient at all angles of incidence is now shown to be
related to a class of inverse problems in quantum scattering
theory where an unknown potential in Schrvdinqger's equation
is sought from scattering data. The first part of the
chapter casts the problem into mathematical form based on the
assumptions set forth in Chapter I. This is followed by a

review of the relevant inverse problem literature.

2.1 Problem Formulation

(a) Acoustic wWave Equation

In acoustics, the pressure qradient gives rise to an

acceleration of mass density p according to

= - vp (2.1)
&>

where p is acoustic pressure and v is particle velocity.

Mass conservation, together with a constitutive relation

(Hooke's law), yields:

FS

.. pcyev (2.2)

in which ¢ is sound velocity in the medium.

L-*4

~-16-
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Fourier transforming the time dependence in the funda-
mental equations (2.1) and (2.2), [%%- + - iw], and
combining the resulting time-independent equations leads to

the acoustic wave equation:

1 2 2 _
p(z)V. (mr VD(X,Z)) + kO n“(z) p(x,z) =0 (2.3)
. w . . co
with ko = E; and index of refraction n(z) = =T ° In the

derivation of equation (2.3), the acoustic medium has been

assumed to be vertically inhomogeneous (or horizontally

stratified). 1In other words, the material properties are a

function of depth (z) only.

The neqlect of density variations reduces equation (2.3)

to the Helmholtz eguation for the pressure,
vZn(x,2) + k *n?(2) plx,2) =0 . (2.4)

The equation (2.4) constitutes the starting point of this

"study.

Note: 1In the presence of smooth density variations, the
acoustic equation (2.3) can also be reduced to the

Helmholtz equation through the change of variable(ll)

-17-




P =p/Vp . It follows that,

92p + kozn'z(z)P =0 (2.5)

with

2 2 2

-2 ,1 3,1 2
n' = n +k0 (2—6Vp~z(;VD)) .

(b) Mapping the Seabed Below a Homogeneous Ocean

The specific problem of interest is mapping the seabed
helow a homogenous ocean. The starting point is again the

acoustic wave equation (2.4):

v2p(x,2) + k 2n%(z) pl(x,z) = 0 (2.6)
for the configuration shown in Fig. 2. Let

n2(z) =1 + uz(z) .

Since the medium is homogeneous in x, the spatial
variables can be separated by assuming that:

i(ksine)x

p(x,z,k) = u(z,k) e (2.7)

Note that ko sine kx’ the horizontal wavenumber (cf.

Fig. 3).

-18-
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k=% water wavenumber
0

Fig.2 Schematic Illustration of the Scattering Problem
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k= k,sin ©

—»

kz= kocos 2]

Fig. 3 Wavenumber Decomposition
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Substituting from (2.7) for n(x,z) into wave equation

(2.6), one obtains an equation for the z variation of

pressure, uf(z):

2

d 2 2 .. 2 2 2 -
[;;7 + (k% - k" sine) + k “uT(z)]u =0 (2.8)
or
2
g—% + [k 2 COSZO + k 2 uz(z)]u = (2.9)
dz ° o

this is similar to the time-independent Schrodinger equation.

Equation (2.9) can be written in the familiar form:

d2u
~—5 (z,E) + [E - V(2)] u(z,E) =0 (2.10)

dz

with the identifications:

k, = kocos8, the vertical wavenumber is "momentum®”.
E = kolcos2g is the "eneray".
v(z) = kozuz(z) is the "potential".

A few remarks are in order:

° The vertical wavenumber, k,, becomes imaginary

for ky > ko'

-21-




° As k, ranges on [ky, =], k, becomes pure

zZ X

imaaginary.

° The enerqgy E = kozcosze is always real. For k,
real, E is positive.

° The potential Viz) = <o2(1 - nz(z)) is in
general positive except, possibly, for a low

velocity layer at the ocean bottom interface.

By analogy with gquantum mechanics, one can draw a "notential

well” diagram (cf. Fiq. 4).

The Schrodinger equation (ea. 2.10) has associated with

it two asymptotic boundary conditions:

ik 2z -ik 2z
u(z) ~ e__{_ + r(p)E __E_ zZ + o~
Y 2n Y 2n
(2.11)
eikzz
u(z) ~ t(p) — Z +
/27

where r(k,) and t(k,) are identified as reflection and trans-

mission coefficients respectively.

The problem that was proposed in the introduction has

now been cast into an eaguivalent aquantum mechanical problem:

-22-




Potential

A ¥(2)

Low-velocity zone

Fig.4 Scattering Potential- Energy Diagram
(Eq, Eo represent possible Energy levels)
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Given r(kz), the reflection coefficient, as a function

of vertical wavenumber k,, obtain the scattering potential

V(z) in equation (2.10),

2.2 Survey of Inverse Methods

2.2.1 Introduction

Much of the background methodology relevant to our
problem is found in the aeophysical literature. An excellent

review of the field is provided by Newton(12'13).

The seismic inverse problem for horizontal layered media
of infinite depth consists in determining the vertical
structure of the acoustic medium (specified usually by
impedance, or, in more detail, bv density and velocity) from
reflection measurements. But for a few exceptions, most of
the previous analyses have been confircd to excitation with
an impulsive pressure signal (§-function) and probing at
normal incidence. The Fourier transform of a §-function is
essentially flat in frequency domain. What is observed with
such an excitation is, therefore, the time trace of the
resulting medium resnonse or its Fourier transform. Because
of the assumed horizontally layered structure of the medium,
and the vertical direction of the signal, acoustic properties
of the medium change only with depth and thus the problem is

one~-dimensional.

-24-




In what follows, we present a review of that past
inverse problem work that is relevant in several different
respects. First, the discussion of the Gelfand-Levitan ap-
proach is particularly relevant bhecause this is our bhasic

approach in this thesis adapted to the Frisk experiment.

Next, the discussion of prior work on single frequency
excitation, launched at non-normal incidence presents the

state of the problem before we addressed it.

The Deift and Trubowitz method is described because
Stickler, having been briefed on our work, adapted the Deift
and Trubowitz method to the Frisk experiment and was able to

devise an alternate approach to its analysis.

The discussion of the Schur algorithm reviews the
analysis by Yagle and Levy of probing with an impulsive
excitation also at non-normal incidence. We comment on why
Yaale and Levy dismissed the Gelfand-Levitan apnproach as
inferior to the Schur algorithm although we have in fact,
successfully adapted Gelfand-Levitan to the solution of the

monochromatic, non-normal incidence problem.

The Riccati equation method is discussed although it was
not used. We considered this approach and believe it to be

promising, but this method was not fully explored.
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2.2.2 The Gelfand-Levitan Approach

The problem that was proposed at the end of Section
(2.1), the reconstruction of the potential of a Schrovdinger
equation from the reflection coefficient, is related to a
classic problem of quantum scatterina theory: How to
reconstruct a Sturm-Liouville differential equation from its
spectral function. The rroblem was solved in a celebrated

(14) who, since they were

paper by Gelfand and Levitan
discussing the radial wave equation, were interested only in
a solution on the half-line 0 < r < =« (standing-wave
problem). Subsequent developments (e.q., (15)) led to
formulations on the full line == < 2 < » in terms of such
readily measured guantities as the phase shift or reflection
coefficient (traveling-wave problem). An excellent distil-
lation of these ideas is to be found in the papers of
Faddeyev‘lG), while a more general survey of the field of
inverse scattering has been carried out more recently by
Chadan and Sabatier(17), The interrelation between the dif-
" ferent approaches and their time-domain interpretation has
been presented by Burridqe(s). A detailed theoretical
presentation and extension of the Gelfand-Levitan theory and

its application to our problem will be taken up in

Chapter 1V.

The exploitation of the Gelfand-Levitan formalism out-

side of auantum mechanics was first taken up by Kay(lg) and

Moses and deRidder(ZO) to solve problems in electromagnetics
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such as the characterization of transmission lines and
dielectrics from scattering data. The possibility of mono-
chromatic probing is mentioned briefly but not pursued. An
interesting by-product of this research is the theoretical
construction of dielectrics which are reflectionless at all

frequencies.

The Gelfand-Levitan approach was introduced into the
field of seismic exnloration by Ware and aki(21), They
presented an analytic approach to the inverse scattering
problem for elastic wave propagation in a stratified medium
when the medium is probed with impulsive plane waves at
normal incidence. The analytic solution was obtained by
transforming the equation of motion in a stratified elastic
medium for plane waves at normal incidence into a one-dimen-~
sional Schrodinger equation. The potential of the resulting
Schrodinger equation depends only on the impedance of the
medium as a function of travel time. No ambiquity arises
owing to the bound state solutions of the Schrvdinger equa-
~tion. Ware and Aki went on to establish a discrete analogy

’

of the continuous solution showing again that the impedance

of the medium could be recovered as a result of probing at
normal incidence when the medium consists of a homogeneous
half-space of impedance p,c, in contact with a sequence of
n homoaeneous layers of impedance p1C1,p3C2/.+«sppCp and
terminates with a homogeneous half-space of impedance

Pr+1Cn+1 " The sequence of n homogeneous layers which have
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thickness An; and which are chosen such that travel time

throuah each laver is a constant,
A"i/ci = At = constant

constitutes what is known as a Goupillaud layered medium.

An elegant solution orF the inversion of a Goupillaud
medium has been given by Claerbout (22) using z-transforms.
Ware and Aki showed the equivalence of the Goupillaud solu-
tion and of the discretized version of their continuous
solution. Thev had promised a second paper dealing with the
inverse scattering problem for plane waves at non-normal
incidence. Such a paner was, however, never published.
Although Ware had obtained in his thesis some partial results
at non-normal incidence prior to the publication of the Ware
and Aki paper, the anproach in the thesis was too cumbersome
and in fact had hit an unsurmountable wall at and above the
critical angle: the reflection coefficient tends to one as
w + » and therefore fails to meet an inteqgrability criterion

required in the application of the Gelfand-Levitan algorithm.

The question arises as to how our approach, a monochro-
matic experiment at all angles of incidence, relates to the
ware and Aki experiment of an impulsive broadband source at
one angle of incidence? The vertical wavenumbers generated
in Ware and Aki (normal incidence) kz = %— (for 0 < @ < =),

o
Cover the range from 0 to =« as the frequency is swept. One
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can see from Fig. 5 that in our experiment kz = kocose (for

0 < cos® < =) formally covers the same range of values of ko
although the experiment is monochromatic. There is, however,
a fundamental difference between the two approaches in that,
as we prove in Chapter III, the reflection response in our
monochromatic experiment is inteqrable and in fact goes to
zero as k, goes to infinity at least as fast as (l/kzz). It
should be noted that Ware and Aki did not run any computer
simulations of their algorithm, and were therefore unaware of
its numerical performance (in fact, the Gelfand-Levitar
approach was widely held at the time to be numerically

unstable).

Inspired by the Ware and Aki approach, a number of
researchers particularly Ahn, Jordan, and Kritikos(23,24,25)
applied the Gelfand-Levitan algorithm to the analytical
problem of the reconstruction of dielectric functions and
electron density profiles. Their work is an analytical
attempt to solve the problem when a dielectric medium is
" probed with impulses at normal incidence. Most of their
effort was applied to the closed-form solution of the
Gelfand-Levitan equation. Such a solution is possible when
the reflection coefficient can he represented as a rational
function of wavenumber. Although the approximation of the
reflection coefficient by rational functions has not yet
received any practical application, the availability of such
closed-form solutions provided us with valuable canonical

examples against which to check numerical inversion results.
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Ware and Aki

k, =%—o (all w's)

Frisk Experiment

K, =-‘E’—0 cos6 (all 6's)

-------------

0%

Fig. 5 Generation of Vertical Wavenumbers in the
Ware and Aki Method and in the Frisk Experiment
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More recently, Berryman and Greene(zs) have addressed
some long-standing aquestions regarding the general applica-
bility of the Goupillaud method. They demonstrated the
equivalence of the Goupillaud method of inversion and of the
Marchenko method(1%) for the Schrovdinger equation for models
with arbitrary layver thicknesses (i.e., continuous impedance
variation). When the reflection coefficients are correctly
interpreted, in the continuum limit, both methods will
reconstruct the same impedance except, possibly, for the
values at a finite number of jump points in any finite span
of travel time. As part of this work, Berryman and Greene
presented a fast (O(NZ)) recursive algorithm analogous to the
Levinson procedure for the inversion of a Toeplitz matrix.

We were abhle to adapt this algorithm and use it in our numer-

ical computations.

During our research, we became aware of an unpublished
report by Jacobs and stolt(27) which demonstrates four
different coordinate transformations which convert the
laterally homogeneous acoustic wave equation of the
Schrodinger form. One of the transformations takes frequency
w to be a fixed parameter which infers our monochromatic
condition. However, Jacobs and Stolt use a slightly
different potential function than the one chosen in this
thesis. Their effort to verify the Gelfand-Levitan algorithm
is similar to the one presented earlier by Moses and

deRidder(20), 1 discussing the Gelfand-Levitan algorithm,
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they make the important assertion that the algorithm holds
even for the case of dissimilar end potentials. We have
presented, independently, a rigorous proof of that assertion

in Chapter 1V,

The method of Carroll and Santosa(28) ywas used by
Santosa(zg) to solve the inverse problem for an impulsive
source at normal incidence. Although the method is similar
to the Gelfand-Levitan approach, it is not based on the

Schrodinger equation but rather on the equation

"+ Wl Vo= qly)v! (2.12)

where G is the Fourier transform of the shear displacement

and a(y) is related to the change in the impedance A(y) by

= - Ay) 13
G(Y) _(W o (2. )
The measured response qg(t) = §(t, x = 0) is transformed

into the spectral density G(uw)

Glw) = =22 [ g(t)exp(ipt)dt . (2.14)
0

L
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The Gelfand-Levitan type equation that is to be solved is

then

Y
T(y,z) + K(y,z) - [ K(Y'n)Tn(an)dn =0, z<vy

0
(2.15)
where T(y,z) is aqiven by
T(y,z) = [ 32082 cosyy[Gla) - %]dm (2.16)
0

and the impedance profile is recovered from K(y,x) through

aly) = - T%%}T . (2.17)

The major difference from the standard Gelfand-Levitan

procedure is that in (2.15) the kernel T is differentiated

with respect to n.

Santosa(30) refined the method to give it a time-domain
meaning by applying it to problems in which the response data
are given for a finite time. The representation obtained is
similar to that in the Gopinath-Sondhi equation(31). Santosa
demonstrated the method to be stable both theoretically and

numerically on a window type profile. Reconstruction errors
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at depth are attributed to errors in the reflection data and
to the first order discretization errors committed in the

approximation of an inteqral by a sum,.

Coen has extended in one of his Dapers(32) the work of
Ware and Aki so as to recover both the density and compressi-
bility profiles of a layered fluid from the plane wave
reflection coefficient at two precritical angles of

incidence, and at all frequencies.

In another paper(33), Coen applied the Ware and Aki
method to recover the three elastic profiles of a layered
half-space from three reflection coefficients. First the
shear modulus and density profiles are determined from
reflection coefficient data for oblique incidence SH plane
waves given at two angles of incidence and for all
frequencies. Once the density and shear modulus have been
obtained, a further experiment using the reflection coeffi-
cient due to an impulsive normally incident P-wave permits
the retrieval of the P-wave velocity and hence of the Lame
profile. The limitation in Coen's work, as in Ware and
Aki's, is that the potential V(z) satisfy the inteqrability

condition.

Z (1 + |e])|vi)|de < = (2.18)
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which would be very restrictive in practice. One result we
demonstrate in our work is that the Gelfand-Levitan algorithm
still applies to the fundamental case when V(z) tends to a

non~-zero finite value at infinity in violation of the above

inteagrability condition.

In a third paper(34), Coen addresses the problem of
common source noint surface data wherein a source is placed
on the free surface of a plane stratified half-space and the
vertical component of velocity or of acceleration is measured
on the free surface. After solving the impulsive source
problem, Coen discusses the monochromatic source problem.

His approach is deceptively similar to the one we present in
this thesis as both approaches transform the original problem
into a one-dimensional Schrddinger equation and then proceed
to use the Gelfand-Levitan inteqral equation to solve the
inverse problem. However, the problem in the two approaches
is nosed in a different way and the steps towards the solu-
tion are dissimilar.

It is useful here to run through Coen's method so as to

point out the difficulty he encounters and which does not

arise in our approach (a constant density is assumed).




The Hankel transform of the pressure field

6(2,2,u0) [ D(r,z,t)rJo(r,;)e—lwtdrdt
00
(2.19)
satisfies the Schrodinger equation
32 2
(—7 - k“Ye(k,z,0) = 0(z,0)¢(k,2Z2,u) . (2.20)
32
where 0(z,w) is the potential
2 cg
0(z,u) = 25(1 - —) (2.21)
C, c

and k is related tn the horizontal wavenumber r through

J

2 L w_ (2.22)

g = /k 7 .
(o]

Q
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The Schrodinger equation is accompanied by two initial

conditions

$lyag =1 ¢ 0,0 = - 5-};;7 (2.23)
where

algsw) = - 3 (2.24)

(o] (O)dTE lw)

and d(z,w) is the Hankel transform of the vertical component

of particle acceleration at the surface z = 0.

Coen's scheme proceeds from an input function r(k,w)

ek,o) = paherel (2.25)

given for all real positive k values and requires the compu-

tation ot R(z,w) where

r(k,s) = é R(z,u)e 24z . (2.26)
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The Gelfand-Levitan eqgquation

z

A(z,y,w) = R{z+y,w) + | A(z,x,u)R(y+x)dy |y| < 2
-z

(2.27)
is then solved for A(z,y) which in turn yvields the potential

o(z) = 2 ‘dlz-A(z,z) , z>0 . (2.28)

The difficulty with the whole procedure stems from the
second step, namely the computation of R(z) from r(k). That
involves an inverse Laplace transform which is numerically
inherently unstable. Our method, on the other hand, starts
off from the Schrodinger equation for the field (rather than
for its Hankel transform) with the associated plane wave
reflection coefficient as a function of vertical wavenumber.

. The Laplace transform of Coen's approach is replaced by a
Fourier transform which does not present any numerical diffi-
culties. It is to be noted that the known numerical

instability of the Laplace transform has led some

researchers, notably Santosa and Symes(42) to dismiss the
Gelfand-Levitan approach to the solution of the inverse
problem. We believe that our approach to the inverse problem

could lead to a positive reassessment of the Gelfand-Levitan

inverse method.
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2.2.3 Single Frequency, Non-Normal Incidence

Very few researchers other than Coen have considered the
sinqle frequency non-normal incidence case. One exception is
Mittra and Schaubert(35) who used a method different from
ours. Their approach is a spectral domain method of probing
stratified, lossless, dielectric media using an alternative
to the Marchenko formulation and resulting in a Fredholm
equation of the second kind which is solved through the use
of rational basis functions. They noted that accurate
inversions can be obtained if data is provided for Kz >> kg
The Mittra and Schaubert examples all have zero terminal
potentials, and although the results are good in general, the
inaccuracies are interestingly larger near the origin with

higher frequencies "seeming to give better resolution."(33)

Another example of the prior single frequency, non-
normal incidence analysis is provided by the work of
Roger(36). Roger sought to determine the index profile of a
dielectric plate backed by a perfectly conducting plane.
.That last fact complicates the problem, since the potential
is always negative and bound states due to surface waves
might exist. Roger starts from a nonlinear integral equation
which he linearizes to obtain a Fredholm equation of the
first kind whose solution constitutes an ill-posed problem
(in the sense of Hadamard). Roger solves this equation by
using the Tikhonov regularization method. The method fails
when the permittivity e(z) exceeds a constant by more than

20% and also when the layer is thicker than 1.5:\.
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2.2.4 The Deift and Trubowitz Method

Deift and Trubowitz(37) introduced the trace method for
determining the potential in one-dimensional scattering
problems for the Schrbdinger equation. The trace method
requires as data the reflection coefficient, while the method
we adopted requires the Fourier transform of the reflection
coefficient. Furthermore, the trace method requires the
solution of a nonlinear differential equation while the
Gelfand-Levitan (or Marchenko) equation that we use is a

linear integral equation.

Stickler visited us in Woods Hole and became interested
in adapting the Deift and Trubowitz trace method to our
problem. He took the same input, i.e., the measurement of
the pressure field as a function of range, where both the
real and imaginary parts of the pressure field are needed.
After the reflection coefficient R(k) is derived by using the
same approach as ours, he then introduces an auxiliary
potential, J(z), which is determined hy using the trace
formula methods of Deift and Trubowitz. Stickler(7) defines

the auxiliary potential, q(z) by

G(z) = a(z) - B (G (2.29)
[o]

where primes denote derivatives with respect to z. The auxi-
liary potential, q(z), can be determined from the Deift and

Trubowitz trace formula
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~

§z) = - 3 xIm[R(k)uyP(z,-k) k. (2.30)

o — 8

The Jost function us(z,k) in (2.30) is determined by solving
~u" + 3(z) u, = ku (2.31)
2 7 ¢ 2 2 :
with the boundary condition

~ e"ikz L .. (2.32)

Deift and Trubowitz have shown that the usual iteration
scheme for solving two coupled nonlinear integral equations
such as (2.13) and (2.14) converges. In our case, instead of
(2.13) and (2.14), we solve for q(z) using a Gelfand-Levitan

linear integral equation.

Stickler presented two numerical examples(7) of applying
the Deift and Trubowitz algorithm on a twice continuous
function (in Chapter VI we apply our method to one of his
examples and refer to it as the "Stickler's Profile”). Since
Stickler generated the reflection coefficient from the solu-
tion of a Riccati equation, he had control over the local
tolerance for the determination of the reflection coeffi-
cient. As in the Gelfand-Levitan method, the results are
excellent for z/L << 1, but deteriorate gradually with depth

(z/L > 1). Stickler attributes the degradation of his method
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to the lack of accuracy of the local reflection coefficients

generated via the Riccati equation.

When we compare Stickler's numerical results to ours, we
observe the general similarity of his results to the ones
described in this thesis. This similarity should not he too
surprising in view of the close relationship between the two
methods (see further discussion in Chapter 1IV). We have no
data to assess the computational efficiency of Stickler's

method versus ours.

2.2.5 Schur Algorithm

Yagle and Levy(38'39) have adopted an algorithm which
reconstructs the unknown acoustic medium layer by layer
(layer stripping procedure). The method is analogous to the
downward continuation method, in that successive up and down-
going waves are measured at the surface. The first
reflection of the impulse yields information about the medium
immediately beneath the surface (at depth A). This informa-
tion is used to update the waves at depth A which then
becomes the new reference surface. The procedure is succes-
sively repeated until the depth of interest is reached. The
Schur algorithm applies to the study of the two component

system of coupled differential equations

QIX(XIt) + qlt(x’t) = - r(x) qz(x't)
qu(xlt) - q2t(x,t) = = r(x) ql(x't) (2.33)
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where the subscripts x and t denote derivatives with respect
to x and t, and r(x), the reflectivity function, provides a

coupling between the downgoing wave qj(x,t) and the upgoing

wave qa{(x,t) (unit velocity).

Yagle and Levy begin their derivation with the set of
equations arising after an initial impulse excitation §(t),

so that q;(x,t) and qz(x,t) can be written as

ay(x,t) = §(t-u) + gy{x,t) u_j(t-u)
(2.34)

g, (x,t) = qy(x,t) u_,(t-u) ,

in which causality has been used (no waves exist for t < u).

From (2.33) and (2.34) Yagle and Levy derive
rix) = 2q2(u,x) (2.35)

The equations (2.33) and (2.35) constitute the continuous

parameter fast Cholesky recursion where qgj(x,t) and qs(x,t)

are updated to yield r(x) from equation (2.35).

At this point, the application of the Schur method
entails taking the Fourier transforms of the system in
(2.33). Denoting the transform of g hy a, we get:

alx = - iwal(x,m) - r (x) az(x,m)
(2.36)

Yagle and Levy thus find a reflection coefficient
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-~ az(xlw)
R(XIW) = —— (2037)
a; (x,u)
which obeys a Riccati equation
R, = 2i0R(x,0) + r(x) (Rx,u)? - 1) (2.38)
with
r(x) = 1lim [2iw R(x,w)] . (2.39)

W 9 o

Equations (2.36), (2.37), and (2.38) constitute the Schur
algorithm, while (2.38) and (2.39) represent a continuous
parameter dynamic deconvolution algorithm. It is to be noted
that the discretized Schur algorithm is similar to the fast

recursion procedure of Berryman and Greene.

Yagle and Levy assert in the concluding section of their
paper that their Schur algorithm is computationally superior
to the Gelfand-Levitan algorithm as used by Coen. This
observation may be true of the Gelfand-Levitan procedure for
impulsive sources at non-normal incidence as presented by

ware and Aki(2?1) ang by Coen(33), but it certainly does not

apply to our approach. Yagle and Levy's main objection to

Gelfand-Levitan is that the boundedness of the potential
-44~-
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[+ e v fdr < o (2.40)
0

may not be satisfied at non-normal incidence. However, we
show in Chaoter IV, that the Gelfand-Levitan algorithm can in
fact be applied even for a non-zero end potential which would
render the integral in (2.40) infinite. Moreover, the Frisk
experiment studied here is performed at a single frequency
and not with an impulsive excitation. We have shown that the
monochromatic reflection coefficient as a function of verti-
cal wave number is integrable so that the negative comment of

Yagle and Levy does not apply to our work.

Although not stated in their paper, the application of
the Schur algorithm to the inverse problem in a layered
acoustic medium involves implicitly approximations similar to
those inherent in the Claerbout's migration method. Although
the Schur algorithm constitutes an improvement over migration
in so far as the downgoing wave strength is modified by the
‘upgoing wave strength it is still an approximation. 1Indeed,
in some of our earlier unpublished work, we succeeded in
improving the Claerbout migration method precisely by
introducing the coupling between the reflected and the down-
going wave. By contrast, our Gelfand-Levitan approach is not
an approximation and except for numerical computation

represents an exact formulation of the problem.
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2.2.6 Riccati Equation Method

One method which we considered upon Stickler's sugges-
tion and which appears to have considerable potential is

based on the Riccati equation. Reflectivity as a function of

travel time 1t obeys the Riccati equation(lz)
%% = - 2iwr - y(t)(1 - rz) (2.41)

with boundary condition r(w,») = 0 in which

_ 1 4az
where the acoustic impedance has been defined by
= (2.43)

Z2(t) = /%—- 0
z

The inverse problem is here that of reconstructing 2(z)
from surface observations of r. To get 2{(z) from Z(t)
“involves further assumptions. We can formulate the problem

equivalently by writing

rlu,e) = [ de' y(ee2lole'™=tdl i 2¢, ) (2.44)

T
while at the surface, the reflection amplitude is

r(w,0) = [ dry(tle 10T (1-r?(y,7)) (2.45)
0

-46-




The last two equations can be regarded as a nonlinear
mapping of r(w,0), given as a function of w, into y(t). The
aim of such an approach would be to reconstruct y(t) from
r{w,0). Although the existence of a complete solution to the
above problem has not yet been demonstrated, an approximation

can be derived. An inverse Fourier transform of (2.28)

yields
r(t) =-11r— f dme_(Zin)r(mIO)
e = 2 [2i (x '~7)]
+ - [ dw é dt'a(e")r"(w,r') xe T .

(2.46)

The first approximation to the solution is the Born series

term, namely

y (1) =3 [ du re,0)e72ter (2.47)

which resembles the first term of our own result. The
convergence of the iteration series solution has not yet been
established, but the approach as formulated by Nilsen and

Gjevik(40) appears promising.
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It is useful here to note that a Riccati equation still
applies in the presence of density discontinuities. The

equation obeyed by the pressure p is
—l ' ' 2 v —
o(p "P')" + (K° - Vip =0 , (2.48)

where V is the potential.

The reflection coefficient may be obtained at the
surface from the continuity of pressure and vertical velo-

city.

_1 ' .
= p p' = ikp
R(k)|z=0 — . (2.49)

The ratio of vertical velocity to pressure, i.e., the admit-

tance,

u = 2P’ (2.50)

is continuous even in the presence of material discontinu-
ities, as it is the ratio of two continuous quantities. The

admittance u obeys a Riccati equation,
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u' = - Q - pu? (2.51)

Note that u(z=0) = iki%-}_gl
_ o (1 - wW(z))
Let u(z) = iky—3)
It follows that W(0) = R(k)|z=0 , and W(z) itself obeys a

Riccati equation

2ikW' - 2wW(Q + pkz) + W-z(pkz - Q) =(0 - pk2)
(2.52)

which can be used to generate the reflection coefficient in
the direct problem or to use an iterative procedure for the
inverse problem. We did not pursue this approach further but

it merits further study.

We have covered here those papers that were most

relevant to the work that follows. It should be noted, how-
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ever, that there are a numher of other interesting inverse
methods that have not been included in this review.
Particularly noteworthy are the papers by Moses(4l), Gopinath
and Sondhi(31), Santosa and Symes(42) and others(43'44).

Also of interest is additional literature on the approximate
inverse methods(55'57). Special mention should be made of
methods based on the Born approximation which originated with

the seminal work of Cohen and Bleistein(45'54).
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CHAPTER III

THE REFLECTION COEFFICIENT

3.1 Introduction

The plane-wave reflection coefficient as a function of
vertical wavenumber r(kz) is central to the inversion proce-
dure we adopted to solve the inverse problem. Its symnetry
property is shown to follow from the integral equation repre-
sentation of the field. We then derive its asymptotic behavior
for large kz by induction and show that r(kz) is integrable,
and hence is an acceptable input to the inverse method presented
in Chapter 1IV.

3.2 Definition and Properties of the Reflection Coefficient

Consider the problem of a plane wave

ikzz
wi(z) = e

incident from z = -» onto a half-space extending from z = 0
to z = +», The half space is characterized by a potential
V(z). V(z) is all that is needed to describe the scattering

of the incident wave wi(z) by the acoustic half space:

ik =z B
y(z) = e z + J G(z,z') V(z') Y(z')dz' -» <z < o

- 00

(3.1)




—

where the Green's function G(z,z') is determined by

eikz|z-z'|
G(z,2') = (3.2)
Zikz

It follows that as z »-«,

y(z) = e Z + e € =z v(z') y(z')dz'
Zikz

ik 2z -ikzz Jm ik z°!

(3.3)

ik 2z
and the coefficient of e z can be identified as the

reflection coefficient.

1 o +ikzz'
m—f e v(z') y(z')dz"'
Z

-0

r(kz) =
(3.4)

The integral representation of the reflection coefficient
allows a simple derivation of the symmetry properties of
r(kz) in the complex plane.

From (3.4)

[* -1 '
1 I . 1kzZ

r(-k,) = - 5 v(z') y(z', - kz) dz'

(3.5)

But, for a real potential V(z) and for real kz, Schrodinger's
equation shows that when w(z',kz) is a solution, so is
y(z', -kz). Moreover, y(z', - kz) = w*(z',kz) which

implies
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B

r(—kz) = r*(kz) (3.6)

The result can be extended to the complex plane through

the use of the Schwartz reflection priuciple,

r(—kz*) = r*(kz) (3.7)

in any region of analyticity connected with the real kz axis.
(This constitutes the analytic continuation of r(kz)).

Now, the Gelfand-Levitan algorithm requires
knowledge of r(kz) for all real kz' However, the symmetry
property expressed in (equation 3.6) demonstrates that
knowledge of r(kz) on the half-line of 0 < kz <w isg
sufficient.

Note that when the vertical wavenumber kz = k,cosé

0
is real and larger than the water wavenumber ko, the angle

of incidence becomes imaginary. That can be verified by

requiring that cos® = cos(Or + i@i) be real. And since
cos(@r + 101) = cosOrcoshOi -1 51n6r sxnh@i
it follows that Or = 0 and kz = kocoshOi for k0 < kz < o,

The mapping between the kz-plane and the O-~plane is drawn

in Figure 6.
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Fig. 6 Mapping from the k- Plane into the 8-Plane
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3.3 Asymptotic Behavior of the Plane Wave Reflection

Coefficient

The input to both the Gelfand-Levitan algorithm
and to the Born approximation is the Fourier transform of
the reflection coefficient

© ik _z

R(z) = [ rk,) e % dk

-0
The properties of r(kz) as kz+w are studied for two

simple cases and then generalized.

(a) Half space
The reflection coefficient is given by
2, -2

r(kz) = —— (3.8)

1+Z

where the impedance Z = pc/cos@ or

pw
7 = k_Q (3.9)
YA
Therefore,
k -k
1l
rk ) = —2 (3.10)
z kz + kzl
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And since kx is continuous,

2 _ .2 . 2 2
ko1 = (k" - k") + k,

and

g4

2 2
kz -*{jkl - ko ) + kz

2

r(kz) =

2 _
kz + (kl k0 ) + kz

As kz +> ©

1 2 2
kz - kz(l + EE;Z (kl - k0 ))
rik_) ~
2 1 2 2,
k., + k (1 + — (k -k
b A z 2k§ 1 0

Hence,

rik,) ——s=3 0 as (1/k,?)

Z

When density variations are considered,

mcos® - ncos 01
r(k_ ) =

mcoso + ncose1
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where m = pl/p and n = kl/ko

As kz +> ©

2

rlk,) v (B + (k% - k%) 2k

(3.17)

which still decays as (llkzz), but tends to a finite
limit (———— +1 ) as k +
Therefore, the Fourier transform of r(kz) involves

generalized functions,
Flr(k,)) = (gi%)a(z) + (analytic function) (3.18)

(b) One Layer Case (cf. Figure 7).

The reflection coefficient at the (0 - 1) interface

is
z2, - 2, 2, - 2, 2ik, d
G+ (E——;—E—) e
rik,) = — z0 P — ik, .d
2L, Gror®) 2l e 1z
17 % %2
(3.19)
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Fig. 7 One Layer Case
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The analysis of the terms within parentheses is
identical to the analysis carried out in the previous section.

One can conclude immediately that

2ik_d

2 2 2 2 z 2
r(kz) ;—:: [(kl - ko ) + (k2 - kl ) e ]/4kz
z
—> 0 as (1/k °) (3.20)
Note:
The delta function potential
V(z) = Ad(z) (3.21)

can be considered as a limiting case of the one-layer

problem. It has associated with it a reflection coefficient(ZO)

r(kz) = ~- i (3.22)

A

2k_ + iA
z

which goes to zero as kz+ «, but only as (l/kz) in apparent

violation of the result just derived. The reason is that

in a delta function potential, V(z) -+~ which implies

2
0

the square root used in section (a). However, the formula-

(k - klz) +», invalidating the binomial approximation to

tion of the acoustic problem requires V(z) < k02 which is

finite ( as long as the frequency Wy is finite). Therefore,
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delta-like potentials do not arise and the binomial

approximation is valid.

(c) General Case

The expression for r(kz) given in the previous

section can be rewritten in the general form

R.. + R e21klzdl
or t B2
rk,) = TR (3.23)
1l + R01R12e
-2ik. d
[1 - (1/R.,)%] e 121
=1 4 0l (3.24)
R ~2ik. 4 .
01 1 1291
(g e + Ry,
01

The reflection coefficient can be readily generalized

to include stratified media (58 )

-2ik. 4
L [1 - l/R01)2] e 1z°1 //
R = + 3
Ro1 1, 12k 4,
(R——) e
0l
-i2k, _(d,-d,)
L (1 - (1/R122)]e 2272 71 j//
+ R + +
12 ( Rl )e-12k22(d2-d1)
12
-i2k_ _(d_-4 )
2 1 nz' n n-l
+ 1 L‘E —(l/R (n_l)n)]e /
R -i2k__(d_ - d )
(n-1)n nz n n-1
[l/Rn-l)n ]e
+* Ryl (3.25)
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The continued fraction representation of (equation 3.25)
indicates that the partial reflection coefficient Rlz(kz)
in (equation 5.23) could represent the reflection
coefficient due to a complicated medium rather than to a
simple homogeneous half space.

The asymptotic behavior of r(kz) is deduced in a two
step process. Assume the configuration of Figures$

. o «
with Rl(kz) - (;E—J as kz >
z

Adding a new interface to the set-up (Figure 9 )

and using equation (5.24),

-i2k _d
kzz (1 - kz4/82) e z'1
r(kz) > 3 + 5
k -2ik _d.
z z i s}
— e +

8 N 2

z
2 2 .
k 2ik_d
s _2 + ‘_§_ -2,y (- Ba o z 1
B k%2 B x4
z z
2 2 4ik d
+ i a8 e 21 + )
k
z
(3.26)
Therefore,
2
r(kz) -—]-<—z-_;'; 0 as (l/kz ) (3.27)
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Fig. 8 Stack of Isovelocity Layers
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o \/" rk,)
1 \‘/RIZ

Fig.9 Adding a Top Layer to the Stack in Fig.8
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The argument just presented is, in fact, the last step in

a proof by induction of the proposition that r(kz) + 0

as (1/k22) in the presence of a homogeneous half space.

The proposition was proved true for one or two interfaces
was assumed true for an arbitrary number of interfaces and
was shown to hold for one more interface. This result
should be contrasted with the corresponding situation in
the Ware and Aki experiment; For angles of incidence
greater than critical, they were confronted with the

fact that r(w) -1, as v » «, and could not proceed with the

Gelfand-Levitan inversion procedure.
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CHAPTER IV

THE ONE-DIMENSIONAL INVERSE PROBLEM

This chapter nresents the derivation of our apnproach to
the one-dimensional inverse problem. The results yield the
methodology underlying the numerical computations described
in Chapter V. The derivation exploits the equivalence
between the acoustic problem and the corresponding quantum
scattering problem as presented in Chapter II. A major dif-
ference between the two is the boundary conditions. Whereas
in quantum mechanics, the unknown slab is surrounded by
isovelocity space (zero end potential), in the acoustics
problem, as applied to the ocean bottom, differing velocities
have to be accommodated above and below the slab (non-zero
end potential). The solution to the inverse problem detailed
in this chapter consists of an extension of Faddeev's
method(16) for deriving the scattering matrix in the case of
zero end potential (or integrable potential) to the case of
non-zero end potential which is representative of the reflec-
tions from the bottom of the ocean. We are able to solve the
problem analytically, in part, because of its one-dimensional
modeling. Our technique is related to that applied by

Stickler to a similar scattering problem.
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4.1 Introduction

The determination of the potential V(z) in the

Schrddinger equation

2
dll)+[
—5 p
d22

2 - v(z)]w(z) =0 . (4.1)

from scattering data such as the reflection coefficient

constitutes the one-dimensional inverse problem.

Two scattering solutions of the Schrddinger equation are
defined by their asymptotic behavior (p is the vertical wave-

number also referred to as kz):

eiPz $1,(P) e"P? 35 2+ - =
wl(z,p) = (4.2)
ipz zZ + + @
sll(p)e
( e~ 1PZ s21(p)elpz as z + +

wz(Z.p) ! (4.3)

\

L s,,(p) e 'P?

The matrix of coefficients

S11(P) S12(P)

s21(n) szz(n)
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is known as the S matrix of the Schrddinger equation. The
element slz(p) corresponds to the plane wave reflection coef-

ficient determined in the WHOI experiment.

Faddeev(lsB) has shown that slz(p) may determine all the
elements of the S matrix and hence is sufficient to obtain
the scattering potential V(z). However, these results have
an important practical restriction, namely, that the end
potential tends to zero; i.e., V(z) » 0 as z + . They are

reviewed in the first part of this chapter.
In the second part of the chapter, we present an exten-
sion of the theory to include the geophysically significant

case of a finite end potential, V(z) » V, as z » =. Finally,
an appropriate choice of source frequency is shown to elimi-

nate trapped modes.

4,2 Properties of the Solution of the Schrddinger

Equation (V;=0)

Two fundamental solutions of the Schrbdinger equation

are introduced,

ul(z.D) ~ elPZ? as zZ + + © (4.4)

uz(z,p) ~ e 'PZ as zZ + - (4.5)




The method of variation of parameters leads to a
representation of uj(z,k) and up(z,k) as solutions of

Volterra equations of the second kind(16)

uy(z,p) = &P - Si““éz‘z" V(z)u,(z',p)dz" (4.6)
a :
. Z . '
u,(z,p) = e P2+ SInpéz-z ) v(z)u,(z',p)dz' . (4.7)

But, since the Schr¥dinger equation is symmetrical in p,

ul(z,—p) and u2(z,-p) are also solutions of (eq. 4.1). The

solution pairs [u;(z,p), u;(z,-p)] and [uy(z,p), uy(z,-p)]

are linearly independent since their Wronskians obtained from

their asymptotic form (eqs. 4.4, 4.5)

2in

Wuyoup*)
(4.8)
-2ip

W(u,,u,*)

are non-zero for p # 0.
Now, any solution of the Schr8dinger equation can be
written as a linear combination of two independent solutions.

In particular,
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ul(z,n) = u2(2.p)c22(p) + uz(z,-p)c21(p) (4.9)

uz(z,n) ul(z,p)cll(p) + ul(z,—p)clz(p) . (4.10)

The next section examines some properties of the coefficients
cii(k) which will later be shown to be closely related to the

elements of the S matrix.

4.2.1 Properties of the Coefficients c;i(p)

—

The coefficients cij(p) can be expressed as Wronskians
by "taking Wronskians" of both sides in equations (4.9 and

4.10). For instance, from (equation 4.9)

W(u (z,p)ruytzep) )= Wug,uyle; (p)

(4.11)
+ Wluy(z,p)yuy(z,-p)]c , ().

We know, however, that in (4.11)

w[ul,ul] = 0 (linearly dependent functions)
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and
wlu,(z,n),u,(z,-p)] = 2ip (c€., ea. 4.8) . (4.12)
It follows that

c;a(p) = 5%5 w[ul(z,n), uz(z,p)] . (4.13)

One can show similarly that

°21(p) = clz(p) (4.14)

cyy(P) = =cy,(-p) = 7%; Wlu,(z,-p)suy(z,p)] (4.15)

Using the values of i j expressed in this form, and substi-
tuting ea. 4.9 into ea. 4.10, one aets the compatibility

relations,

cll(D)sz(D) + Czl(p)clz(_p) =1
(4.16)

2 2
ley, ()| “=ley 007 =1

- 70 -




and,

The asymptotic form of uz(z,k) in (eq. 4.7) for z + =,

uy(z,p)= e PP 1- 5%5_£ e'PZ'v(z" u,(2")dz"]

(4.18)
+ QTTE [ e"1PZ V(z')u,(z')dz"

leads by comparison with (eq. 4.9) to the identifications:

cyp(p) =1 - 7%5 _£ eipz'V(z')uz(z')dz' (4.19)
¢ = 355 | e P2 y(z0)u, (2" )dz" . (4.20)
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Usina the nrevious estimates for Uqy in eq. 4.5 and the
Riemann-Lebesque theorem, it can be seen, that for larqge p,

*
cyo{P)-1 is o(l/p) and cll(p) is o(%). Moreover, cj,(p) is
analytic in the upper half plane, does not vanish on the real
n axis, and has only a finite number of simple zeros on the

imaginary axis.

4.2.2 Properties of the s;:(k) Coefficients

One is now ready to return to the original scattering

problem and its associated S matrix.

Vl(z,n)r the solution of the scattering problem of

interest, can be written in terms of the linearly independent

solutions u,(z,p) and uy(z,-p)

wl(z.p) uz(z.-p) + slz(p)uz(Z.n) (4.21)

= sll(p)ul(z,p) . (4.22)

The order symbol o( ) is defined as follows:

f(e) = olgle)) as € =+ O
if  1im Z{e)l o
moatey - O

e + 0
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Writing out uy(z,p) in terms of u,(z,ip) as given in eq.

4.10, one obtains the compatibility relations

21
(o) (4.23)
S12(P) = 212(2) '
21

Carrying out the same operation on wz(z,k), one obtains

Sp2(P) = 3 %p)
12
(4.24)
cll(o)
S,,(p) = .
21 clzlpi
From the asymptotic behavior of the Jost functions i3
one can deduce the asymptotics of the S matrix*
$11(P) = s55(p) =1 + 0(1/p)
(4.25)

slz(p) and 521(p) = 0(1/p)

The order symbol O( ) is defined as follows:
f(e) = Olg(e)] as ¢ + O

if  lim 5%%% =A, 0< |A] <=
e» 0"
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It can be seen from eq. 4.24, 4.16 and eq. 4.17 that the

S matrix is unitary,
‘811‘2 + |S12‘2 = ‘522‘2 + ‘521|2 =1 , (4.26)

implying conservation of energy, and that since Sij(—p)

S*ij(o)p

|
(=]

s*  + s (4.27)

*
115 21 125 22 © .

The coefficients sij(p) are continuous for real
D, sll(p) being analytic in the upper half plane except for
poles on the imaginary axis (corresponding to the zeros of
clz(p)). Conditions (4.26) and (4.27) allow one to recon-
struct the scattering matrix from a knowledge of the reflec-
tion coefficient s;,(p). In what follows, s12(p) is
identified with the plane wave reflection coefficient r(kz)
and syi(p) with the transmission coefficient t(k;). Substi-
tuting cy; by (1/t) and cyy by (r/t) in (eq. 4.10), it

follows that
t(p)ul(z.p) = r(p)uz(z,p) + u2(2.-p) . (4.28)
The above equation is the basis for the derivation of

the Gelfand-Levitan inversion method that has been obtained

for a potential V(z) » 0 as z + t». Such a potential arises
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in the study of dielectric slabs by electromagnetic probing.
In the earth, however, the velocity c(z) tends to a value c;
larger than the surface velocity cg. Correspondingly, the

potential V(z) tends to a positive constant Vie

o ?
= 12 - _0_
Vi = kg \1 3
<
(4.29)
o, 2, 2

Therefore the Gelfand-Levitan inversion does not really
apply, and a scattering solution is needed that allows a non-~
zero end potential. 1In the next section, we present our

approach to this problem.

4.3 Non Z2ero Final Potential

To accommodate to a non-zero V;, we now consider the
fundamental solution of the Schrddinger equation uj;(z,p)
defined asymptotically as
ip'z

ul(z,p) ~ e zZ + ® (4.30)

where




We assume Imp'> 0, in order to satisfy the radiation condi-

tion at ». The Volterra integral equation representation of

u;(z,p) in eq. 4.6 is modified to

Ul(Z'D)‘:eip'z-I Sinp;)SZ—z‘ )_[V(z)_vllul(z. ,p)dz" (4.31)
¥4

while the intearal equation representation of us(z,p) is

unchanqged

. z . .
u,(z,p)=e”1PZ4 | Sin g(z‘z L v(z)u,(z',p)dz" . (4.32)

4.3.1 Asymptotic Behavior

The key observations to be made relative to eq. 4.31 is
that since ul(z,p) is the solution of a Volterra equation of
the second kind with square integrable kernel, the method of
successive approximation will converqe. That observation has
in fact been applied by D. stickler(7 in connection with the

Deift-Trubowitz inversion procedure; thus, we have

iv
V(z)-V1 ipz- iﬁlz- 7iEZ(V(z')-V1)dz'

1
u (Z D)= 1- e +H000T0*
b (2ip) 2 (Imp > 0)

(4.33)

H.O0.T. stands for higher order terms
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from which the transmission coefficient t(p) can be deduced

Vi 1 20 1 g
S h ] ] 1 - ]
Vl 1~7E—+5T5 {“V(z Ydz +7TE / (v(z') Vl)dz
(2ip)
(4.34)
where 2z, is arbitrary.
Similarly, (Imp > 0)
1 z ( l) 1
-ipz= %+~ J V(z')dz
u,(z,p)=(1- Ql‘ilz)e Ap + H.O.T. (4.35)
ip)

4.3.2 Inversion Procedure

We are now ready to present the inversion procedure for

V) > 0. Note that the basic relation (eaq. 4.28) still holds

for Vl > 0,
t(p)ul(z,p) = r(n)uz(z,n) + uz(Z.-n) (4.36)

Following Faddeev's(16) case of vV = 0, for the case of

Vy > 0, a function h(z,p) = uz(z,p)eipz is introduced. The
expression for ujp(z,p) (ea. 4.35) shows that h(z,p)-1 is
analytic in the upper half plane and Im(p) > 0 and + 0 as

|p| + », We thus ohtain (e + 0+)
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o, _ 1 T oh(z,p')-1
h(z,p)-1 = 5= / Srotte (4.37)

or usinag (eq. 4.36)

L= tu(z,ph)e P 2
- - ———— '.—.—--——--
hiz,p)-1 2n1_£dn pY+p+ic
i (4.38)
1 ° r(p')uz(z,p')e 1p-z
- ~ | - - —dp"*
2ni e p'+p+ie
The first inteqral in (eq. 4.38) is zero since
1
mf v(z')dz!
t(p) -ipz . _ vi{z) —
(2ip)
thus
, r(n')uz(z,o‘)e'ip'z
h(Z,D) -1 = - m f p'+p+i€ 4p' . (4.38a)

Comparing eas. (4.37) and (4.38a), we can express us{(z,p') in

the Levin representation(17),

s z .
uz(z,p) = e 1PZ, / K(z,z')elpz'dz' (4.40)

-0

in which the kernel of the integral does not depend on n;

ineo’

_78_




K(z,y) = - %; i r(p)uz(z,p)e-ipydp . (4.41)

Inserting (eq. 4.40) into (eq. 4.41) results in the Gelfand-

Levitan tyne equation

z
K(z,y) + R(z+y) + [ R(z'+y)K(z,z')dz' = 0 (4.42)
—oo y < 2
where R(z) is the Fourier transform of r(p)
)] 7 -ipz
R(z) = r(ple dp . (4.43)
w ]

When (eq. 4.41) is substituted into the Schrddinger
equation, it is found that K(z,y) satisfies a partial differ-

ential equation

- - V(z)K 0 (4.44)

subject to the boundary conditions

K(z, =-») =0 (4.45)

V(z) = 2%; (z,2)
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The solution of R(z) in eq. 4.43 consists, in general,

of both a continuous and a discrete part. The discrete part
applies in the presence of trapped modes. In that case,
additional information is required to construct R(z)

-ip.z

riple i PZap + § me 1, (4.47)
i

R(z) = %?

8§+ 8

where the p;'s are the poles of r(p) on the positive

imaginary axis.

The choice of the constant normalization coefficients my
is dictated by the requirement that V(z) = 0 for z < 0. This

can be seen by examining the Gelfand-Levitan equation (4.42),

YA
K(z,y) + R(z + y) + [ R(z' + y) K(z,z')dz' = 0. (4.48)

We note that R(z) = 0 for z < 0 insures that K(z,y), and

hence that V(z}! = 2 %é (z,z) are all zero for z < 0. The

choice of m; in (eg. 4.47) is therefore dictated by the
requirement R(z) = 0 for z < 0. Now, the integral in (eqy.

4.47) is for z < 0,

1

5= | r(pye 'P?

dp 1 (4.49)

1]
-
1
T
¢]

where the bi's are the residues at the poles o7} of r(p).
Suhstituting for the value of the inteqral in (eaq. 4.47), and

imposina r(z) = 0 for z < 0 yields m; = =-ibj.




In principle, in order to solve for R(z), an additional
measurement would be required to obtain the residues bj.
However, the next section demonstrates that, in the presence
cf slow velocity layers in the sediment, the frequency can be
selected low enough to eliminate the trapped modes (or bound
states of the Schrddinger equation), and thus the continuous

part of the solution for R(z) will suffice.

4.4 Round States

The potential diagram (Fig. 3) indicates that bound
states may occur due to the presence of a low velocity zone
near the water sediment interface. Bound states are square
integrable solutions of Schrddinger's equation and, as will
be shown later, present considerable difficulty in the
inversion procedure. The number of bound states M was

obtained by Barqmann(sg)

M< [ z|v_(z)|dz < M + 1 (4.50)
0

where V_(z) is the neqgative portior. of the potential for

z > 0. It is clear that the number of bound states is
determined by the width of the low velocity 2zone (prescribed
by the aqeoloqay) and by the denth of the potential well which
is a function of the freguency at which the experiment is

conducted.




To eliminate bound states, we impose the condition:

[ z|v_(z)|dz <1 . (4.51)
0

Now,
[ z|v_(z)]daz < 5 2% |v_(=)] . (4.52)
0

where £ is the width of the well and |V_(z)|.,, its maximum

depth:
2 cg
'V-(Z)'max=|£7 1 - = I (4.53)
o Cmin

The condition expressed by eq. (4.12) is satisfied when

2
c
Lw 0
0 c”.
min
In particular, for fw < Y2 , there will be no trapped
min
modes. This simplified condition is a refinement of
Stickler's result that (éﬁ) should be sufficiently small
0

(4.50). We have found that either of the two simplified

conditions is too restrictive in practice and one should use
our full equation (4.54). Hamilton has studied the charac-
(60)

teristics of surface sound channels in marine sediments

The velocity ratio R = /¢q) ranges from 0.984 for

(Cmin
pelagic clay to 0.99 for terrigeneous sediments, while the

height of the channel depends on the velocity gradient a
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Therefore, for R ~ 1, the condition of zero bound statés (eqg.

4,54) can be written

o < a(l - RY™3/2 (4.56)

A marked improvement in the bound obtains if a linear

velocity nrofile

c(z) az + € i (4.57)

in

with

c(e)

1]
Q

is assumed in the condition of zero bound states (eq. 4.51).

The corresponding potential is then

-k 1 - for 0 <z < & (4.58)

oN

V(z)

Substituting this V(z) into eq. 4.51 and inteqrating by parts

yields
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2 1 2
- % [(1-R) + 5 (1-R)® + en R} <1 . (4.59)
a
For R ~ 1,
1 2 .1 3
- en R = (1-R) + 5 (1-R)° + = (1-R) (4.60)

Therefore,
w < ar3 (1-r)”3/2 (4.61)

Table I presents the upper bound on the probing
frequency with the condition of zero bound states for repre-
sentative values* of a and R in the abyssal plain
environment(Go). The current frequency of operation(z),

220 Hz, is low enough to eliminate the bound states in clayey
silt and silty clay. It is assumed that for operations in
clay sediments, an acoustic source will be available at about
half the current frequency which would be sufficient to do

away with the possible bound states.

* The velocity gradient (a) can assume values over a wider
rang?4§han shown in Table I. For instance, Frisk et
al., have inffrred from_experimental data that (a)
ranged for 0.5s7% to 2.9s” ' at three locations in the
Icelandic Basin.
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Table I: Upper bound on the probing fregquency for
the condition of zero bound states as a
function of velocity ratio, R, and

velocity qgradient, a.

~
R
Clavey Silt Silty Clay Clay
a 0.999 0.99 0.984
1s~1 8.7 kHz 275 Hz 136 Hz
1.2s"1 10.4 kHz 330 Hz 162 Hz
1.3s71 11.3 kHz 358 kHz 176 Hz
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CRBAPTLER V

NUMERICAL SOLUTION OF THE GELFAND-LEVITAN EQUATION

5.1 Introduction

The Gelfand-Levitan Equation

(2
R(z+y) + K(z,y) + J K(z,z') R(y+z') dz' =0

-0

(5.1)

is a Fredholm equation of the second kind in the variable y
with z regarded as a parameter. The object of this chapter is
to present three methods of computing K(z,z) and hence to
reconstruct the potential V(z).

5.2 Series Expansion

A parameter A is introduced in the Gelfand-Levitan

equation

z
R(z+y) + K(z,y) + A j K(z,z') R(y+z')dz' (5.2)
Y
and a solution is sought by a method of successive approxima-
tions. The solution is written as a power series in A
2
K(z,y) = K (z,y) + 2K (z,y) + A Ky(z,y) + ...

(5.3)




Integrating term by term and equating coefficients of equal

power of A one gets

K, (z.y) = -R(zty) (5.4)
z

Kl(z,y) = - I R(y+z') Ko(z,z')dz' (5.5)
Y

and in general

z :

Kn(z,y) = - J R(y+z') Kn_l(z,z')dz‘ (5.6)
=Y

The theory of Volterra integral equations of the second
kind demonstrates that the series is convergent for all A

when the norm of R,

(2
IR} | = J Rz(z+y)dy (5.7)

-2

61
existsi gut, Parseval's identity indicates that ||R|| is

always finite since

Nll—-*
=

|IR]| < Jw R% (yiay leb(p)|2dp (5.8)

-0 -0

Hence, b(p), given [b(p)f <1 and b(p)ﬁ:g (l/pz), is square

integrable.

- 87 -




The Kn(z,y) are bounded by

(n-1)
K (z,y) ] < llRIlz\ﬁﬂi————— (5.9)

z , 2 (2 2
where A = J R”(y+z')dz' and B = j j dy'dy"R(y'+y")
Y Y Y

5.2.1 The Potential

The expansion of K(z,y) yields a corresponding expansion

for the potential V(z) = 2 §5é§4ﬁl—,
viz) = v0 4y L y@ (5.10)
where,
VAR dzg (z,2) = -2 (22 (5.11)
vl = i;%—(z,z) = 4r? {22) (5.12)

(2)

The computation of V is more involved and is presented

here for reference purposes

z (2
Kz(z,y) = I J R(y+z') R(z'+z") R(z+z")dz"dz'
-y -z'
(5.13)
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which can be written

¥4
Kz(z.y) J dz' ¢(z,z') (5.14)

-2

where

Z
¢(z,2"') J R(z+z2') R(z'+z") R(z+2z") dz" (5.15)

—z'

Therefore,

dK z
-—z(z,z) = ¢(z,2) + ¢(2,-2z) + J daz' %%(z.z')
dz
-2
(5.16)
But,
o(z,-z) = 0 (5.17)
and
22 2
$(z,2z) = R(2z) J R°(z')dz" (5.18)
0
2
3%(2,2') = R(2z) R*(z+z') + R(z+z') | S (R(z+z")R(z'+z")dz"
3z (27 z g;( (z+z2")R(z'+z")dz
-.z'
(5.19)
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Finally,

22
v{?) (2) = 4r(22) f RZ(z')dz' +
0

z (z
+ 2 ( [ R(z+z') R{(z'+z") %%(z+z')dz"dz'

)
-z -z! (5.20)

V(z)(z) displays the global character of the higher order
terms (which become increasingly unwieldy).

To summarize, the following approximation will be used

&(z) = ~2%§(22) + 4R2(22) (5.21)

5.2.2 Connection with Other Formulations

To first order,

V(z) =-2%§(2z) (5.22)

which can be written in terms of the reflection coefficient

b(p)

v(z) = %l J pb(p)e-lzpzdp. (5.23)

-0

Recall the expression for the reflection coefficient
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b(p) = %_J ePZ'y(z1) ¢(z')dz" (5.24)

-= 00

o)

3 1]
The Born approximation ¢(z') = e*P?’ results in

Nh,

[+ o) . '
b(p) = J V(z")a2iPZ gz (5.25)

- 00

ip

Taking a Fourier transform of both sides leads to

v = & [ ppipe 2P (5.26)

-Q0

That is the result obtained by Cohen and Bleistein (45).
The first order approximation to V(z) in the Gelfand-Levitan
formulation is therefore the Born approximation.

Stickler's inverse procedure entails the solution

of the coupled equations

~u" - §(z)u, = p°
u; - d(z)u, = p-u,

a(z) =

‘N

i 2
J pb(p) uj(z,p) dp (5.27)

E

The auxiliary potential a(z) is identical to V(z) and

uz(z,p) is the solution that satisfies uz(z,p) = e_lpz, Zr=o,
-izp

To first order assume uz(z,p) = e and obtain once again,
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z) = 2% j pb (pye”

- 00

21pZ g, (5.28)

5.2.3 Algorithm

The first step is, uf course, the computation of the

Fourier transform of the data,

R(z) = %; j b(p)e PZgp, (5.29)

- 00

followed by a straightforward computation of

V(z) =-2—§§ (2z) + 4rR®(22) (5.30)

Observe that determining the potential at depth z requires
data at depth 2z. The truncation of the series leads to

a deterioration of the estimate of V(z) with depth. 1In
particular, since b(p) is integrable, R(z) tends to zero

as z+~ (Riemann-Lebesgue theorem) and it follows that

G(z) +0 at depth even when the potential V(z) tends to a non-

zero final potential Vf.
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5.3 Uniqueness of the Solution

Suppose there were two solutions of the Gelfand-Levitan

equation, K(z,y) and K'(z,y)

Z
K(z,y) + R(z+y) + f K(z,z') R(y +z') dz' =0
=Y
Z
K'(z,y) + R(z+y) + J K'(z,2') R(y+z') dz' =0
Y (5.31)

Then K(z,y) = K(z,y) - K'(z,y) satisfies a homogeneous

Volterra equation of the second kind

%(z,y) = [z ﬁ(z,z') R(y+z') dz' (5.32)
-y
Since R(z) is square integrable(cf. Ch.III), it follows (61)
that this equation has only the trivial solution ﬁ(z,y) = 0
and therefore the solution of the Gelfand-Levitan equation

is unique.

5.4 Finite Difference Methods

The natural way to solve the Gelfand-Levitan
equation is to discretize it by converting the integral into

a sum
n
K(n,m) + R(n+n) + h L wiK(n,i) R(m+i) = 0

i=-m
(5.33)
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where w, are the weights in an appropriate quadrature
formula. For the trapezoidal rule, wo is % at the end points

and 1 in between
K(n,m) + R(n+m) + h I K(n,i) R(i+m)
i=-m

- 5h(R(0)K + R(n+m) K(n,n)) 0 (5.34)

and since R(0) = 0

n
K(n,m) + h £ K(n,i) R(i+m) + R(n+m) [Ll - %(n,n)]=0
=l—

i m

(5.35)

To solve for K(n,n), one has to solve the Ware and Aki (21 )

type matrix equation,

(I +hR)K =h (5.36)

(I + hR) can be inverted by Gauss elimination. A more
efficient algorithm has been presented by Berryman and

Greene ( 26) who put the equation in the form:
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r — — - -
Ry hk (n, -n+1) 0
Rle : ‘
I+ h : . = .
hk{n,n-1) 0
Lgle...RZQJ lnl+hk(n,n)J _lJ
(5.37)
where k(n,m) = EL%LEL-— (5.38)
1—5K(n,n)
To obtain the potential at depth n - k%,
Aoy, = Z(K(n,n) - K(n-1, n-1)] (5.39)

cne needs to invert a (2n-2) x (2n-2) matrix for K(n-1,n-1)
followed by the inversion of a (2n) x (2n) matrix for

K(n,n). 1In fact, since the object is to reconstruct the
potential down to depth nh, a succession of matrices of
increasing size have to be inverted. The Berryman and Greene
algorithm is similar to the Levinson algorithm for the
inversion of Toeplitz matrices (22 ). The method proceeds
by recursion; given the solution of the (2n-1) x (2n-1)

system, the solution of the (2n) x (2n) system is generated

by using the recursion formulae:




fi(Zn)

gi(Zn)

fi(2n-l)

gl (2n-l)

The vectors f(2n-1) and g(2n-1) are defined by

and

where Q2n =

2n-1

r = h X

and
2n i=0

The recursion starts with fO(O) = 1 and go(O) =

The solution is then,

Qop-1 (1-1y

f.
i

ﬂ
£, (2n-1)

fl(én-l)
£, (2n-1) J

-

92n-1(2n-1)

2)

(2n-1) R
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B -17)
£,n-1 (2n-1)

.

(5.40)

Loot2n-1) |

pomey

£,n-1 (20-1)

f1(2n-l)

2n+1-i/92n-1

ARl

| fp(2n-1)-Q,

(5.41)

—

_1-‘

(5.42)




1 -0, (1 +1rx,)
2 2n-1 2n (5.43)

K(n,n) =

=1

1+ Q2r1-1(1 * r2n)

Berryman and Greene have suggested smoothing R(z) to obtain

R(n) (26).

R(n) = % I R(z)dz (5.44)

which would allow for delta functions in R(z).

5.5 Coupled Equations Method

A method to bypass the matrix inversion has been
suggested by Kritikos, Jaggard and Ge who were interested
in determining the dielectric permittivity of a slab from
reflection measurements at normal incidence. The algorithm
was tested numerically on reflection coefficients that
could be represented by two and three pole Butterworth
filters. The scheme uses in conjunction with the Gelfand-
Levitan equation, the hyperbolic partial differential
equation satisfied by K(z,y) (cf. Eq. (4.44)).

2 2
2K (z,y) - 2K (z,y) - 2K(z,y) T2 =g

2z Y

(5.45)
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For simplicity, a change or coordinates is introduced
_.é. (5.46)

and the equations are discretized:

m-1
Gelfand-Levitan: Km,n + 2h 122 Ki+n-l,m-i+l Ryi-1
+ a4 th+n-l,l)R2m-l =0
' (5.47)
PDE: Km+l,n+l = Km,n+1 + Km+l,n + 2h[(Km+l,l - Km,l)—llxm,n
(5.48)
The potential is obtained through
V=2 (K . -K ) (5.49)
m—]/A h m,l m-l,]. *

The point of the method is that Km,l can be computed
directly from the Gelfand-Levitan equation without a
matrix inversion since the terms within the sum can be
generated via the PDE.

5.5.1 Analysis of Stability

Although it has not been possible to study the

stability of the coupled system of equations, a simplified
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analysis of the PDE may be of interest.

Let Km n = wmelkn be a Fourier component and

r

assume that

_ .2
2h(Km+l,l - Km,l) = h Vm (5.50)
is known. The PDE becomes
wotl o1k o ymeik ol (hzvm-l) (5.51)

The amplification factor is therefore

Wm+l[ _ [1 . hzvm

I —
Wm elk-l

l (5.52)

which is larger than 1 for arbitrarily small step size h or

potential Vm as k »~ 0.

5.6 Error Estimates

5.6.1 Discretization Errors

The discretization of the Gelfand Levitan equation

is accompanied by an error ¢ '
n,m
n
K(n,m) + R(n+m) + h I w.K(n,i) R{m+i) + ¢ =
. i n,m
1l=-m
(5.53)
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h2 z

For the trapezoidal rule, €=-73 (KR)' |
Y
The equation that is actually solved is
A n ~
K(n,m) + R(n+m) + h I w.K(n,i) R(m+i) = 0
. i
i=-m
(5.54)
Or, in matrix notation (see equation 5.37 ).
(I + hR)K = b (5.55)
rather than
(I + hR)K = b - ¢ (5.56)
It follows that
(I + hR) (K - K) = ¢ (5.57)
For a nonsingular matrix (I + hR},
K - K = (I +hR) “¢ (5.58)
Taking norns,
~ _l
1K = K[| < |] (T + hR) "|[]|]e]] (5.59)
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Assuming that ||hR|] < 1, where the norm is such that

Izl =1,
-1
(@ + 8R) 7] < l-élFRTF (5.60)
Therefore,

[k -k [ < I:gr%ﬁrr (5.61)

2n

Using the « norm, ||e||_ = max le;] and ||R]|, = Z |R(1)]
i=1

(which also equals I[Rlll, the absolute column sum of column

(2n)).

max| e
2n

1 ~hzgz |R(1)]
i=1

K -K|| < (5.62)

Since |e| is 0(h2) for the trapezoidal rule, the approximate
solution K converges to the exact solution K as h »- 0. Note
that the denominator in (eqguation 5.62) decreases with

increasing depth, hence raising the bound on ||K - K|]|.

5.6.2 Data Errors

Errors in the plane wave reflection coefficient
r(kz) and in its Fourier transform R(z), mean that one is

~

solving for K(n,m) in the Gelfand-Levitan equation:
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n

K(n,m) + R(n+m) + h I w, K(n,i) R(m+i) = 0
i=-m %
(5.63)
Or in matrix notation,
(I + hR)K = b (5.64)
which can be written,
(I + hR + héR) (K + 8K) = (b + 8b) (5.65)
where R = R + éR, and K = K + §K.
It follows that
_ -1 -1 -1
8K = (I + (I + hR) héR) (I + hR) (b - KhéR)
(5.66)
Hence,
-1 -1 -1
[16K[| < |1(x + he)""[|.|]|(I + (I + hR)™~ héR) *||
< sbl [ +n|lsR[|. ||| ])
(5.67)
or,

eI < T—woprar——TaarTy (16011 + nlIxI|1]6r]])

(5.68)
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As the errors in R(z) increase, the bound on ||&K]||
also increases. Moreover, it is clear that as depth
increases ||R||_= I |R(i)| also increases raising the

i=1

bound on the relative error ||8K||/||K]|].

5.6.3 Errors in the Potential

The discrete version of the potential yields:

|6v(n)| < £ (|6K(n,n)| + |8K(n~1, n-1)]) (5.69)

fa g} V)

In the absence of data error R, |6V(n)| - 0 as the
sampling interval h + 0 since the quadrature error ¢ is

0(h%) (see equation 5-62).
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CHAPTER VI

NUMFRICAL RESULTS

The derivation of the plane-wave reflection coefficient
from pressure measurements for the setup of the Frisk experi-
ment was the subject of Mook's thesis(64), Unfortunately,
the attempt by Mook to apply his technique to one set of
experimental data yielded reflection coefficients higher than
one; such a result is not consiscent with physical require-
ments (IR‘ < 1). It is not yet clear whether Mook's problem
lay with improper modeling of the experimental setup, with
the imprecision of the data, or with the numerical techniques
used to extract the reflection coefficient from the Jdata. It
should be noted, however, that the experimental data have
yielded, via trial and error methods, excellent models for
the acoustic parameters of the seabed(4). This was done by
assuming a seabed model, computing the pressure field and

matching it up to the observations.

The starting point in our analysis is a layered model of
the acoustic profile to be recovered. From this exactly
known model, a plane-wave reflection coefficient is
generated. The reflection coefficient is what would have
been computed from Mook's method, or subsequent improvements
to it, for the Frisk experiment on this particular layered

seabed. The reflection coefficient is then Fourier trans-
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formed via an FFT to provide the input to the Gelfand-Levitan
integral equation in accordance with the theory developed in
Chapter 1V. The particular casc of two half-spaces in
contact (step discontinuity) yields a reflection coefficient
which can be Fourier transformed analytically. Closed-form
solutions for the Born and Improved Born approximations to

the inverse solution are also obtained for that case.

More generally, the Gelfand-Levitan equation is solved

numerically to yield the potential and velocity profiles.

We have concentrated our efforts on the study of the
Gelfand-Levitan inverse method using synthetic data for which
the correct answer is known. The comparison of the recon-
structed profile with the known original profile allows us to
assess the impacts of limited aperture, frequency, profile,
noise, density and path loss on the accuracy of the numerical

schemes described in Chapter V,

6.1 Generation of the Reflection Coefficient

The first step in the evaluation of our approach is the
generation of the reflection coefficient., With the exception
of the simplest cases, the plane-wave reflection coefficient
must be generated numerically. The method used is based on
the Thomson-Haskell propagator matrix approach used by
Mook(64), with one modification. The plane-wave reflection

coefficient is obtained as a function of the vertical wave-
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number (R(k,)) rather than as a function of the horizontal
wavenumber (R(k,)). There are two essential elements of the
propagator matrix approach: (a) dividing the acoustic
profile into homogeneous layers, and (b) selecting variables
that are continuous across interfaces. The latter is accom-
plished by choosing the pressure P(z) and vertical component
of velocity U(z). Within an isovelocity layer, the field can
be decomposed into up and down going waves,
ik _z -ik_z

P(z) = P, e +pP_e °Z (6.1)
where k, denotes the vertical wavenumber within the homogene-
ous layer. Unlike P(z), P, and P_ are discontinuous at an
iéterface. The normal component of velocity U(z) is related
to P(z) through one of the time-harmonic "telegraph"

equations:
3P . iupU (6.2)
which yields,

U(z) = Y [P, e - P_e | (6.3)

Where Yn = kz /mon is the admittance of the homogeneous
n

layer n. In matrix form, equations (6.2) and (6.3) become:

-106-




P(z)

u(z)
L

-ik.z | [ 7
e ¢ P
+
-ikzz
-Y e P
n 4L "]

(6.4)

When P(z) and U(z) are known at point z, of the layer,

one can deduce the up and down going components P, and P_ by

inverting the matrix in (6.4)

(Within a homogeneous layer P, and P_ are, of course,

constants.)

— ik _z
e 2 1

-ikzz1

L-Yne

-1kzz1

-
e P(z,)

LU(zl)

-

(6.5)

One can then determine P(z) and U(z) at another

point, say z,, within the layer by substituting (6.5) into

the right-hand side of (6.4):

cosk,(z; -

zz)

iY sink (z; - z,)

-

i . "nrr =
Y- sink,(z) - z,) || P(z,)
cosk_(z; - z,) ) LU(zz)-

107-

(6.6)




or, introducing the propagator matrix ¢

P(Zl) P(Zz)
0 (z, - z,) . (6.7)
u(z,) U(z,)

One can now proceed from one layer to another by integration,

— - _ -
P(zg) P(z,)

= 9y 0,000 (6.8)
u(zg)| Ty |u(z,)
L - L =

Where the ¢i's depend on the parameters of the material
making up the respective layers. Mook (64) has found that the

computations can be improved by modifying (6.8) to

P(z P(z )
0) n aj; bi n
= I (6.9)
v i=1 Ly by %y 3y
oU(zg) Y 0(z )
in which
n a . b, ¢ ¢
1 i i = 11 12 (6.9a)
i=l gy by 1ty a; 421 ¢22
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and where

Y
Z; < ; 1 is a normalized admittance
n
a; = coSs kz_hi
i
bi = =i sin kz.hi
i
= : .th
hi = thickness of i layer
_ 2 2 2

This has the effect of giving the two components P(z) and

YU(z) similar scales of magnitude.

Now, the reflection coefficient R(k,) at the top inter-

face is defined as

F-0 (6.10)
R k = e .
(k;) Pro

Therefore by introducing (6.5) into (6.9) one obtains
= 1
= 5 (6.11)
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To compute the ratio in (6.10), a relation (boundary condi-
tion) is needed between P(z,) and U(zp). That relation is
obtained by noticing that in the (n + 1)St layer, one has

only down going waves. Therefore,

1

n+l T T 3 P(z ,1) (6.12)
and, since Po+1 = P(zn), one has
Pro L | 11 T e ¢12 * 422 1
- 1 Pool (6.13)
P_o ¢11 T 421 $12 T $22 Tn+l
which yields the reflection coefficient
P_ $17= ¢51% Tyyp1(®759= ¢55)
R(kz) = 3 0 _ "1l 21 N+1\712 22 . (6.14)

+0  ®117F 4o1F Tyar(8g0t 455)

Mook (64) has also found it advantageous to scale the
layer propagation matrices so that the largest element value

in a given layer matrix is 1.

The values of admittance for three terminations are

readily identified: hard bottom (Y, 47 = 0), soft bottom
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(Yo41 = =), and isovelocity termination (Y, 4,y = Y,).
Although of theoretical interest, and of possible applicabil-~-
ity to other situations, the soft bottom case has no appli-

cation in the ocean bottom problem discussed here.

The division of the acoustic profile into homogeneous
layers is done in a way akin to quadrature formulae in
numerical integration using thinner, closely-spaced, layers
in regions of rapid change in the acoustic parameters and
thicker, wider-spaced layers in regions of slow change. We
have found that the common rule of thumb, ten layers per
wavelength, although satisfactory in geheral, is probably too
conservative. We have found that for complicated profiles,
where the reflection coefficient was required for a large
number of values of k,: the computation of the plane-wave
reflection coefficient constituted the most time-consuming
step in modeling the whole inversion procedure. Clearly,
this step, is inherent only in our analytical evaluation of
the inversion problem; when reflection coefficients are being

" processed from measurements, this step will be eliminated.

In order to test our inverse procedure, we selected a

few representative profiles which are defined as follows:

-111-




(a) Half-Space

The half-space profile is defined by a velocity profile

clz),

clz) = ¢q , z <0

The reflection coefficient for this profile and its

Fourier transform were obtained analytically in Section

(6.2).

(b) Window Profile

Although of no direct application in ocean bottom

acoustics, the window profile defined by

cl(z)

L}
S
~
N
N
o

is a standard example used to test inverse procedures. The

window profile is of particular interest in electromagnetics

(dielectric slabs).
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(c) Stickler Profile

Stickler(7) chose a twice continuous function to test

the NDeift-Trubowitz inverse method,

c(z) = ¢y ’ z <0
2 2 z 3
= o + (Cl‘Co)(3(E) -2(-1.:‘-) ), 0< z < L
= cl ’ L < YA .

This profile does not support a trapped mode at any
frequency.

Stickler generated the associated reflection coefficient
via the Riccati equation, while we used the Thomas-Haskell
procedure outlined earlier in this section. An example of

the Stickler profile is shown in Fig. 10.

(d) Frisk Profile

This velocity profile is based on the results obtained

by Frisk in his deep ocean bottom experiments(4)

c(z) = cq ' z <0
= cg - (cp=cyplz , 0<zzl
=cy + vz, 1< z< L
= co v z > L
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Typical parameters used are: cp = 1540 m/s, cp =
1515 m/s, cp = 1655 m/s, vy = .97, and L = 145 m (see
Fig. 11).

In spite of the low velocity zone near the ocean-bottom
interface, this profile does not support trapped modes at the
frequency used for the examples (25 Hz).

Examples of reflection coefficients are shown in the
amplitude and phase diagrams of Fig. 18. Note that as we
have shown in Chapter III for the uniform density case, the
amplitude goes asymptotically to zero as the vertical wave-

number goes to infinity.

6.2 Case of a Step Discontinuity in Potential

We have been able to obtain analytically the Fourier
transform of the reflection coefficient in the case of a step
discontinuity in potential, that is, in the case where the
ocean bottom is a homogeneous half-space. (V(z) = v, for

z > 0).

The reflection coefficient at a step discontinuity in

potential is
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k- /vy + K2

)
z 0 z
(6.15)
2,2
) (k- ./-vot k)
Vo
The Fourier transform of r(kz) is
1 o —ikzz
R(Z) = -2? -‘{ r(kz)e de
(6.16)
i = (s - /V4yt's )2 sz
= e ds
™ i Vo
which in this form can be identified as a known inverse
- Laplace transform(63),
= -2
R(z) = - = J, (/Vyz) (6.17)

Thus, in this particular case, one can proceed to the
Gelfand-Levitan procedure with an input which is as accurate
as the computation of the Bessel function, and therefore,

this approach removes any inaccuracies which may be
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introduced either in the computation of the reflection

coefficient or in that of its Fourier transform.

Figs. l12a,b,c represent the reflection coefficient of
eq. 6.15 and its Fourier transform for a half-space

(eq. 6.17).

As a matter of fact, we have illustrated in Figs. 13 and
14b reconstructions of the step discontinuity using the exact
analytical expression (eq. 6.17) for the Fourier transform of
the reflection coefficient and the numerically devised
transform in accordance with the method discussed in Section
6.1. It can be seen that our reflection coefficient method

yields results as accurate as the Bessel function expression.

6.2.1 Approximate Solution of the Gelfand-Levitan Equation

for a Step Discontinuity

Continuing with the case of a homogenous half-space, or
step discontinuity, the "Improved Born" approximation

presented in Chapter V can be now readily obtained in terms

of Bessel functions
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v(z) = - 2%§ (2z) + 4R%(2z)

(6.18)

Vo — 6 - 4 2.,
4——2—' Jl(Z/VOZ) - z—z- J2[2/V02) - ;—2— JZ( 2/VOZ) .

1]

Born Correction Term

Improved Born .

From the asymptotic behavior of the Bessel functions, we know

that,
3n
Jl(;); : “/g; cos (z - )
and (6.19)
2 _ Sn
JZ(;)c : ,/%E cos(g = =) -

Hence, we can deduce the asymptotic behavior of the recon-

structed potential,

viz) » 0 as(z73/?) (6.20)

Z > @

which recalls the limitation of the Improved Born approxi-

a

mation, already mentioned in Chapter V, that v(z) + 0, even
Z +» ®

in the case of a finite terminal potential.
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On the other hand, the asymptotic behavior of the Bessel

functions near the origin is

1
Jyle) 3
r +» 0
(6.21)
1 2
g » 0

and therefore, substituting in (6.18) the reconstructed

a

potential V(¢ ) tends to the exact potential near the origin,

V(z) + \Y% (6.22)

At the origin, the "Improved Born" correction term is zero,
but its contribution to the accuracy of the results becomes

progressively more important as z increases.

We illustrate the Improved Born approximation in
Fig. 12d along with the Standard Born approximation and the
Correction Term. The substantial improvement due to the
Correction Term in (6.18) over the standard Born approxi-
mation is clearly visible in the half-space case. Moreover,
our Improved Born approximation results in a more accurate
reconstruction of the acoustic velocity profile to further
depth. The other features of the approximation are also

visible, i.e., excellent reconstruction near the origin and
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deterioration of the reconstructed velocity with depth (the
potential V + 0 as 2z + « means that c(z) + <cqg, the

water acoustic velocity as 2z + «). The Improved Born is
also illustrated in the case of a Stickler profile in Figs.

28 and 29.

6.3 Fourier Transform of the Reflection Coefficient

The Gelfand-Levitan algorithm requires as an input the
Fourier transform, R(z), of the reflection coefficient r(k,),

R(z) = 3= [ r(k e 2 dk_ | (6.23)

which requires a knowledge of r(k,) over the whole line
- < k, < . But the symmetry property demonstrated in

Chapter III (eq. 3.6),
- = *
r( kz) r (kz) ‘ (6.24)

reduces the requirement to a knowlege of r(k,) over the half-

line 0 < k, < =. It follows that

] -ik _z
R(z) = %; é r(k,)e z dk, + complex conjugate (6.25)

is real, and therefore all the quantities involved in the

Gelfand-Levitan algorithm are also real.

¥
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Theoretically, r(kz) can be calculated for a given
acoustic model over the range 0 < kZ < w, In practice,
samples of r(k,) are given over a finite range a < k, < t,
and presumably this range is restricted to real anqgles
0 < k, « kg, where k, = 0 corresponds to grazing incidence
and k, = kg (the water wavenumber) corresponds to vertical
incidence. It is useful to study the behavior of the Fourier
transform under different restrictions imposed upon the

knowledqge of the reflection coefficient such as limited

angular aperture and different sampling densities.

6.3.1 Fast Fourier Transform

The computation of the FFT for reflection coefficients
r(k,) computed over 0 < k, < a, including thc case where

a > kg (corresponding to complex angles of incidence), does
not present difficulties. The adopted alqorithm uses time
decomposition with input bit reversal(66) — 1p fact, for the
acoustic profiles tested, a = 2 or 3 kg was sufficient as the
asymptotic decay of the reflection coefficient with
increasing k, was even more rapid than the (l/kzz) derived in
Chapter III. The errors in the imaginary part of the FFT,
which are of the order of 10-8 (single precision), are
neqgligible, and therefore the real part of the FFT and its

amplitude are interchangeable on the plotted results.
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6.3.2 Limited Angular Aperture

Since it is not practical to have the sampling process

cover the entire non-zero portion of r(k,), it is useful to
study the effect of limited angular aperture, i.e., r(k,)
given over the finite range a < k, < b, on R(z), the Fourier
transform of r(k,). The Fourier transform is affected by the

nature of r(k,) and by the degree of truncation,

For N sampling points spaced Ak, apart, the total

sampling interval T covered is Neak,. This corresponds to an
NAak
. =1 YA . . .
angular aperture of a = sin (—F—_)' when k, = 0 is within
0 .

the known aperture (i.e., 90° > @ > cos"l(NAkz/ko)). Note
that for T > kg, cos(T/kg)>1l, and the aperture includes all

real angles plus complex angles. Now, the Fourier transform

of r(k,) can be written

~-ik_z

T -ik_z 1 .
dk, + »— é r(k,)e dk,,

R(z) = %? £ r(k,)e 2

(6.26)

Rl(z) + Rz(z) .

Ri(z) is the part of R(z) that is approximated by the

discrete Fourier transform (N samples).

Ro(z) represents the error incurred due to the limited

angular aperture. The energy lost in the process,
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F = |R2(z)|2dz (6.27)
T

can be computed on synthetic examples. Due to the precipi-
tous droo in r(k,) bevond k., the wavenumber corresponding to
the critical angle .= sin_l(;%), and due to the asymptotic
behavior of r(k,) for large k,, it is readily shown on
computer simulations that a knowledge of r(kz) over real
angles is adequate for most cases. In fact, there is little
change in the reconstructed profile as more angles are
included beyond the real ones. On the other hand, as the
angular aperture is restricted, the profile reconstruction,
via the Gelfand-Levitan method, produces a smoothed out
version of the original profile. This low-pass filtering
phenomenon is best understood by interpreting the effect of a

finite aperture as a low-pass filtering of the original

velocity profile. This may be seen from the Born approxi-

mation eq. (5.26),

. 21 -Zikzz
Viz) = — kzr(kz) e dkz

=3
8+— 8

where V(z) and k,r(k;) form a Fourier transform pair;
windowing r(k,) signifies low-pass filtering V(z) and
therefore yields a smoothed out velocity profile. The
Gelfand-Levitan reconstruction can then be interpreted as an
unfiltered, faithful reconstruction of the smoothed out

original. Severe degradation of the reconstruction is
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observed when the angle of incidence is restricted to

90° > 0 > 0. (angular amerture a < (90°-0,)). This is easily
understood, as the critical angle region contributes
substantially to the reflection coefficient. A cursory

examination of reflection profiles will demonstrate this

point.

A series of figures displays the progressive deteriora-

tion in profile reconstruction as the angular range is

restricted. The evolution from Fig. 19 (kZma = .512, com-
X
plex angle of incidence) to Fig. 20 (kzmax = 0.128), and Fig.
21 (k = 0.064, 6 = 51.13°) where k, > k =
Zmax ! Zmax Zeritical

0.0373 (o, = 68.5°) shows that only small changes take place
and that these changes are confined for the most part to the
velocity drop region near the ocean bottom interface.
However, as the angles are further restricted to beyond the
itical k .. ) major changes do occur as
critical angle ( Z max < kZcrltlcal ] g
seen in Fig. 22 (k, = .032, @ = 71°) and Fig. 23 (k, =
max max
0.016, 06 = 80.9°)., The examination of the impact of limited
angular aperture in this case leads us to expect, in

practice, a good reconstruction of acoustic velocity profiles

from reflection data restricted to real angles (0 < o < 90°).
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6.3.3 Sampling
The sampling rate to be chosen is governed by three

competing considerations:

(a) Adequate sampling in the k,-domain to avoid aliasing in

the Fourier transform of r(kz).

(b) Adequate sampling in the z-domain to obtain a stable and

accurate Gelfand-lLevitan numerical reconstruction.

(c) Adequate sampling in the z-domain to obtain the

necessary resolution in the reconstructed profile.

Each of these points is discussed next.

(a) Aliasing

Since the Fourier transform of the reflection coeffi-
cient, as is the rule with spectra of transients, tends to be
smooth and approaches zero asymptotically as Kk, increases to
infinity, the sampling interval Ak, is chosen so that
essentially all, rather than all, the spectral content of the
waveform is contained below 1/(2ak,). For a box-like

reflection coefficient of width 2'kcritica1 where kcritical

corresponds to Ocrpitr the bandwidth is proportional to
1/(2 Kepitical) which indicates that an appropriate sampling

interval should be a fraction of kcrjtical® One should note
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however, that in the context of an actual experiment, the
choice of Ak, is not as straightforward. The reflection
coefficient r(k,) is obtained from r(k,), the reflection

coefficient as a function of horizontal wavenumber Kpe
) L2
k + k - ko . (6028)

The sampling interval in k,. is determined by the maximum
distance, D, between source and receiver during the

experiment

(6.29)

It is clear that a uniform sampling in kK, does not lead

to a uniform sampling in k.,

dk
Z——
—-— = tan Gin

% (6.30)
r

c ’

which also shows that the problem is particularly severe near

) = n/2 (grazing). On the other hand r(k,) near grazing

inc
is well known, r(k,) = -1. A useful way to look at the

problem is to represent the dispersion relation in the
(k, - k;) plane which clearly shows the increase in Ak, as k.

goes from 0 to k.
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(b),(c) Sampling in the z-domain

The sampling interval in wavenumber space, Ak,., is not
chosen through aliasing considerations alone. The other
consideration is the resulting resolution in the z-domain

imposed by the total sampling interval T,

where T = N Akz

A decrease in Az can be effected either by a decrease in
the sampling interval in the wavenumber domain Ak, or by an
increase in the number of points N. It is easier to resort to
the latter method as the reflection coefficient due to its
rapid decrease for large vertical wavenumbers can be
conveniently padded with zeros. Moreover, the size of Ak,,
which can be varied in a synthetic experiment, is usually

fixed in an actual experiment.

An examination of the reconstructions of a half-space of
profile, Figs. 14-17, reveals that excellent reconstructions
can be achieved for appropriate choices of N and Az. A
window reconstruction is shown in Fig. 24. The main effect
of a decrease in Az is that adequate reconstruction of the
acoustic profile is possible to a greater depth. It is also
true that for given sampling intervals Ak, and Az, an

increase in the height of the velocity jump at the seafloor
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results in a deterioration of the reconstruction with
depth. That is evident for a half-space by comparing Fig.
14b and Fig. 17 and for the Improved Born approximation by

analyzing eq. (6.18).

6.4 Frequency Scaling of the Reflection Coefficient

Although the experiment we are analyzing is mono-
chromatic, it is important, for a proper choice of operating
frequency, to study the behavior of the plane-wave reflection
coefficient with frequency. For the simplest acoustic
medium, a homogeneous half-space, the feflection coefficient
is independent of frequency. As soon as a spatial scale is
introduced in the acoustic medium, by inserting a layer for
instance, the reflection coefficient becomes frequency
dependent. This dependence, which can be expressed through
the continued fraction expression of eq. (3.25), is at the
heart of the Ware and Aki inverse method. 1In this section we
show that the solution of a high frequency problem is
equivalent to the solution of a scaled problem at a lower

frequency.

The one-dimensional Schrddinger equation,

a? 2
(== + k,)e(z) = V(z)e(2) (6.31)
dz

gives rise to the reflection coefficient

o eik, 2’
R(k,) = J PE V(z')e(z')dz' (6.32)
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At a different angular frequency w' = awg, with
corresponding water wavenumber k' = akg, the Schrodinger

equation becomes

2
(=, + ok, %)6"(2) = V' (2)4'(2) (6.33)
dz

where V' represents the potential at the new frequency w'.

Now, the potential is frequency dependent,
(1 - n?) < (6.34)

in which n, the index of refraction is a function of depth z.

Therefore,

V'(z) = a2V (z) . (6.35)
yields the Schrbddinger equation
St a?k,2)e" (2) = a®Vy (208" (2) . (6.36)

The change of variable z' = az restores the original
Schrodinger equation (6.31) albeit with a "stretched" version

of the original potential,

2
(3——, + k2)e'(2") = Vo(z'/a)e'(z') . (6.37)
Zl
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The corresponding reflection coefficient is now

ikzz'
R'(k,) = [ %—i-,;—;—— Vog(z'/a)g ' (z")dz" (6.38)
The reflection coefficients at the experimental

frequencies w and w' are therefore identical for a given

wavenumber kz if
Vo(z) = Vo(z'/a) . (6.39)

One can therefore conclude that a high frequency experi-
ment (w' > w) is equivalent to a low frequency experiment
with a stretched profile (a > 1l). One can therefore compare
the reconstruction of a given profile at two frequencies, say
w and o' = aw, by comparing the reconstruction at a single
frequency v of the given profile with its stretched version
(stretch factor a). Now, it is a numerical fact, as seen in
previous examples, that profile reconstruction via the

.Gelfand-Levitan algorithm deteriorates with depth. It is
therefore clear, at least for simple profiles, such as a step
(half-space) or a window (layer), that a lower experimental
frequency entails deeper reconstruction as shown in Fig. 30.
That holds for more complicated profiles, and we therefore
conclude from a frequency scaling point of view that the
lowering of the experimental frequency allows for deeper
profile reconstruction without noticeable effects on the

reconstruction of the detailed variations of the profile.
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6.5 Profile Reconstruction in the Presence of Density

Variations

Although the focus of this thesis has been on the
reconstruction of the acoustic profile in the presence of
velocity variations at a single frequency, it is useful here
to show how one can extend the method to the retrieval of the
velocity in the presence of density variations and also to

recover the density profile.

We have shown in Chapter II (eq. (2.5)) that in the
presence of smooth density variations, a change of variables
retained the governing Helmholtz and Scﬁrbdinger equations
with an attending redefinition of the index of refraction to
account for variations in the density p,

v o= a2 -2,1 2 3,1 2

The density dependent potential to be reconstructed is now,
vt = k2 (1 - n'?) (6.41)

A single frequency experiment can only hope to reconstruct
n'(z). To recover n(z) (and therefore the velocity, c(z))
and p(z) one needs to carry out the experiment at two
frequencies w; and wp with water wavenumbers kg and k.

respectively. The associated potentials are then
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vy(z) = kj(1 - n'})
and (6.42)
2 2
Vy(z) = k5(1 - n'5) .

These potentials can be reconstructed by the application of
the Gelfand-Levitan algorithm to the corresponding reflection
coefficients. One can then obtain the difference of the

potentials,
= 2 2 2

and therefore retrieve the velocity dependent index of

refraction n(z),

n(Z) = ——r——-—z— - 1 (6-44)
Ky = k3

and subsequently reconstruct the acoustic velocity profile,

c
- 0
c(z) AT C (6.45)
One of our numerical computations, was to conduct the
two-frequency procedure on the profile of Figure 10, The
reconstruction of c(z) is shown in Figure 30i. The recon-

struction features in this case of c(z) are similar to the
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constant density case. The density as function of z could in
turn be recovered by solving the differential equation (6.40)
for p(z) qgiven n(z).

NDensity discontinuities invalidate the asymptotic
behavior of the reflection coefficient presented in Chapter
III. 1In fact, the reflection coefficient is generally not
integrable, and one has to introduce generalized functions in
its Fourier transform. The attending difficulties and their
resolution in the Gelfand-Levitan algorithm have not been

studied here.

6.6 Acoustic Attenuation

The study of the attenuation of acoustic waves in marine
sediments has been studied recently by Rajan and Frisk (67)
who proposed a perturbative inverse method for the recovery
of the attenuation data from reflection data. Rajan has suc-
cessfully inverted for the acoustic attenuation profile given
the reconstructed velocity profile we had obtained through
the Gelfand-Levitan algorithm(68). Here, we shall look at

the effects of intrinsic attenuation on the reconstructed
acoustic profile.

Although our formulation of the model of a Frisk experi-
ment does not include attenuation, it is possible to posit a
lossy acoustic profile, generate the corresponding reflection

coefficient and then run it through the Gelfand-Levitan
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algorithm. As expected, for small loss (a ~ 0.001-2.005
dB/m), the reflection coefficient, its Fourier transform, and
the reconstructed profile are little affected by the per-
turbation (see Fiqs. 25a, 25b, 26, 27). As loss increases

(a ~ 0.01 dB/m), the reconstructed profile deteriorates
rapidly. It should be pointed out that the lower values of
intrinsic attenuation prevail in the sediments in the abyssal
plain at the frequencies of interest (220 Hz). Incidentally,
one of the advantages of a monochromatic experiment is that
the frequency dispersion law of the intrinsic attenuation,
which is difficult to establish experimentally, particularly
at low frequencies (< 1 kHz), does not enter into

consideration.

6.7 Noise

As demonstrated in Chapter V, the Gelfand-Levitan
algorithm is stable, with small errors in the reflection
coefficient resulting in small errors in the reconstructed
velocity. The numerical experiments we have conducted by
adding zero-mean Gaussian stationary noise to the reflection

coefficient input support our previous conclusion.

Gaussian noise was added to both the real and imaginary
part of the reflection coefficient generated by the method of
Section 6.1. The resulting reflection coefficient was
submitted to the usual steps involved in the inversion
procedure, namely the Fourier transform step followed by the

application of the Gelfand-Levitan algorithm.

-133-




The signal to noise ratio (SNR) is defined as

I
SNR = 10 loglo(Ti)
n

where the signal and noise powers for N discrete points are

and

I =o¢ 2 , the variance of the noise.

n n

As shown in Fig. 31 for a window profile, the perturbat-
ion of the reflection coefficient by the addition of zero-
mean Gaussiar noise (o = 0.1) results in a roughly propor-

tional degradation of the reconstructed potential.

The preliminary assessment of the effect of noise leads
us to conclude that the Gelfand-Levitan inverse method is
stable in the presence of noise. This analysis can be
refined in the future by including a more pertinent model for
the noise based on Mook's results(64); Mook has shown that
the addition of zero-mean stationary white Gaussian noise to
the point source pressure field resulted in a non-stationary
variance with the noise power concentrated near the vertical

(k, = kg, the water wavenumber). One should also note that

z

the measured reflection coefficient itself can be regarded
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as a non-stationary process with a mean that varies between
one near qrazing incidence and zero at infinity. That
consideration may lead to a more appropriate measure of

performance than that of SNR presented here.
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CHAPTER VII

CONCLUSION

In this thesis we have examined the theoretical and
computational underpinnings of a novel approach to the
determination of the acoustic parameters of the oceanic
sediment layer. Traditional marine seismic methods, acoustic
reflection and refraction measurements, "yield no velocity
information in the top of the first sediment layer which is
of critical interest for modeling the sea floor for under-
water acoustics" (34 ). That is precisely where the method
we have analyzed in the thesis is most accurate. Interval
velocity calculations are restricted to layer thicknesses
larger than one twelfth the water depth (34 ), and subsequently
the velocity at the sediment interface cannot be determined
accurately. In the absence of in situ core measurements
of surface velocity VO’ the velocity gradient at the top
of the sediment column is also uncertain. The direct
inverse method presented here requires only the a priori
knowledge of the speed of sound in the water above the
sediment layer.

By operating at a single frequency, the effects of
dispersion are separated from the propagation process.
Moreover, the dispersive characteristics of the medium can

be studied by performing the experiment at various frequencies.

-
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A single frequency, steady-state experiment also means

that the measurement relies on amplitudes rather than on
arrival times (explosive methods). While it is true that

time is measured more accurately than acoustic pressure,
arrival times can not always be interpreted correctly due

to multiple reflections. Amplitude, in turn, may be affected
by a host of factors to which arrival time is insensitive

such as loss and diffraction; it is not yet possible to judg.
the relative merits of the two methods in the absence of apprc-
priate experitmental data.

Contributions

The determination of the acoustic properties of the
ocean bottom was showr to be equivalent to the reconstruction
of an unknown potential in a Schrodinger equation from the
plane-wave reflection coefficient given at all angles of
incidence (Chapter II).

The pivotal role of the reflection coefficient lead (

us to a detailed examination of its properties in Chapter III.
In particular, we showed, by induction, that the reflection
coefficient decays at least as rapidly as (1/kzz) and is
therefore integrable.

The derivation of our approach to the direct inversion
method was presented in Chapter IV. The Gelfand-Levitan
method was extended to the case where the acoustic velocities
on either side of a slab are different. That is, of course,

the case in the ocean bottom problem where the acoustic velocity
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in the basement is larger than the acoustic velocity in the
water. We also showed that the neglect of bound states is
justified at the current operating frequency in both clayey
silt and in silty clay.

Three methods for the numerical solution of the
Gelfand-Levitan integral equation were investigated (Chapter
V). The first method we developed is a series expansion of
the solution obtained by successive approximations. The
first two terms of this expansion represent a substantial
improvement over the well known Born approximation.

The other two numerical methods presented in Chapter V
are based on the discretization of the Gelfand-Levitan
integral equation. They represent two ways to bypass the
matrix inversion inherent in a straightforward solution of
the discretized equation. We then obtained estimates for
the bound on the error in the integral of the potential due
to discretization errors and due to errors in the reflection
coefficient.

In Chapter VI, we discussed the numerical results
obtained from the inversion of synthetic data. By dealing
with synthetic data, we insured that the bottom profile was
known exactly and that the effectiveness of the method could
be studied without any fear of experimental imperfections.
We concluded that the Gelfand-Levitan method appears to be
very accurate at the top of a sediment column, just where

the more usual methods are least accurate. The resolution
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obtained is less than the wavelength of the acoustic source
in the water. The degradation of the reconstructed velocity
profile becomes, however, pronounced if the reflection data
is restricted to real angles above critical. Perturbations
of data were also studied. Perturbations such as intrinsic
loss in the acoustic mediim c. noise in the data produce
perturbations in the reconstructed profile. The inclusion
of density variations requires the use of two frequencies
and two separate inversions of the Gelfand-Levitan equation.
We were able to gauge the performance of the
numerical schemes through the study of the inversion of the
acoustic profile for two half-spaces (constant velocity),
for which we derived the Fourier transform of the reflection
coefficient analytically. The improvements wrought by
the improved Born method are clear, as are the effects of
sampling on the reconstructed profile. The improved Born
method represents a fast and easy to implement method of
recovering the velocity at the top of the sediment column.
The two finite difference methods are more time-consuming
but yield an accurate reconstruction of the acoustic profile

over greater depth.

Future Work

On the theoretical front, we suggest a thorough

investigation of the Gelfand-Levitan method in the presence
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of density variations. It may also be useful to incorporate
loss directly into the original formulation. One should also
seek efficient numerical implementations of the Gelfand-
Levitan algorithm that could increase the penetration depth
of the reconstruction. 1In this respect, we think that the
combination of the Gelfand-Levitan algorithm with a priori
information such as the acoustic properties of the basement
might constitute a promising approach.

On the experimental front, the testing of the Gelfand-
Levitan inverse method on field data should be given priority
to determine its ultimate value. If an actual ocean-based
experiment were precluded at the moment, we would suggest
carrying out a similar electromagnetic experiment on dielectrics
at microwave frequencies.

On the numerical front, one would want to test the
whole experimental scheme, starting from pressure measurements
due to a point source and ending with the Gelfand-Levitan
inversion. Special attention should be paid to the effect
of noise in the recording of pressure on the plane-wave
reflection coefficient and ultimately on the reconstructed

acoustic parameters.
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It is remarkable that the Frisk experiment which was
conceived on purely intuitive grounds, when modelled
theoretically, bears out the expectation that accurate results
are achievable. To date, experimental data has been inter-
preted by time - consuming trial and error procedures. Our
mathematical and numerical approach suggests that a more direct
inverse method for processing experimental data, requiring
no a priori information about the acoustic parameters of

the bottom is feasible.
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